

QMA401 Spurenfeuchte-Analysator Bedienungsanleitung

97450 DE Ausgabe 3 Mai 2022 Bitte füllen Sie kurz die nachstehende Tabelle für jedes gelieferte Gerät aus, um im

Servicefall eine schnelle Übersicht über alle wichtigen Gerätedaten zu haben.

Produktname	
Bestellcode	
Seriennummer	
Lieferdatum	
Installationsort	
Meßstellennummer	

Produktname	
Bestellcode	
Seriennummer	
Lieferdatum	
Installationsort	
Meßstellennummer	

Produktname	
Bestellcode	
Seriennummer	
Lieferdatum	
Installationsort	
Meßstellennummer	

QMA401

Kontaktinformationen zu den lokalen Michell Niederlassungen finden Sie auf unserer Homepage www.michell.com

© 2022 Michell Instruments

Dieses Dokument ist Eigentum der Michell Instruments Ltd und darf keinesfalls ohne die ausdrückliche schriftliche Genehmigung von Michell Instruments Ltd. kopiert oder anderweitig reproduziert, auf keinerlei Art und Weise an Dritte weitergegeben oder in EDV-Systemen gespeichert werden.

Inhaltsverzeichnis

Siche	erheit		viii	
	Warnhinweiseviii			
	Elektrische Sicherheitviii			
	Drucks	sicherheit	viii	
	Gefahr	renstoffe (WEEE, RoHS3 & REACH)	viii	
	Kalibrie	erung (Werksvalidierung)	. ix	
	Repara	atur und Instandhaltung	. ix	
Abki	irzunge	en	х	
1	EINLE	EITUNG	1	
	1.1	Allgemeines	1	
	1.2	Funktionsweise	2	
	1.3	Messgasweg	2	
	1.4	Interne Probenahme-Optionen	3	
_			_	
2	INSTA	ALLATION	6	
	2.1	Hinweise zur Analysator-Lagerung	6	
	2.2	Auspacken des Geräts	7	
	2.3	Elektrische Anforderungen	7	
	2.4	Anschlüsse auf der Geräte-Rückseite	9	
	2.5	Drucksicherheit	10	
	2.6	Anschluss der Gas-Versorgungsleitungen	10	
С	DETD		17	
5	DE I K.	Allgamaina Information zum Potrich	12	
	3.1 2.2	Aligemente Information zum betreb	12	
	J.Z D D 1	EIsuilbeliebildille	12	
	3.Z.I	Fiprishton dos Applycators	17	
	3.Z.Z	Elilitichilen des Andrysalors	15	
	2.2 2.4	Menu-Suuktui	15	
	Э. т 2 Б	Hauntanzoigo	16	
	3.5	Vollbild-Moduc	10	
	3.5.1	Messkurve in voller Bildschirmgröße	10	
	3.5.2	Intermenüs der Hauntanzeige	10	
	3.6.1	Warnhildschirm	19	
	362	Messwerterfassungsanzeige	20	
	363	Δlarm-Δnzeige	20	
	364	Rildschirm "Feldkalibrierung	21	
	365	Üherwachungsanzeige	26	
	37	Finricht-Menii	27	
	371	Messanzeige	28	
	3711	Trägergas	29	
	3712	P TP Berechnungsmethode	30	
	3.7.1.3	Bereinigen	31	
	3.7.2	Druck Eingang	31	
	3.7.3	Ausgänge-Anzeige.	33	
	3.7.4	Bildschirm (HMI)-Anzeige	34	
	3.7.5	Echtzeituhr-Anzeige.	35	
	3.7.6	Software-Kommunikationsbildschirm	36	
	3.7.7	Ethernet-Anzeige	36	
	3.7.8	Historie der Feldkalibrierung	37	
	3.7.9	Informationsanzeige	37	
	3.8	Leitfaden zur Probenahme	38	
	3.9	Messzyklus	41	
	3.10	Kalibrierzyklus	43	

4	WARTUNG.	45 45
	4.2 Ausbau und Austausch der Trockner-Modul	46
5	KALIBRIERUNG	47
	5.1 Rückführbarkeit	47
6	APPLIKATIONSSOFTWARE	49
	6.1 System-Anforderungen	49
	6.2 System-Anschlüsse	49
	6.3 Einstieg	50
	6.3.1 Anschlussart (Serielle Verbindung RS485 oder USB)	51
	6.3.1.1 RS485-Verbindung	51
	6.3.1.2 USB-Verbindung	51
	6.3.1.3 Modbus TCP-Verbindung (Ethernet)	51
	6.4 Hauptfenster	52
	6.5 Einsatz des Messkurven-Diagramms	53
	6.5.1 Diagramm-Optionsfenster	54
	6.6 Datenspeicherung	55
	6.6.1 Konfigurieren der Startzeit der Messdatenspeicherung	56
	6.6.2 Konfigurieren des Zeitendes der Messdatenspeicherung	56
	6.6.3 Starten der Messdatenspeicherung	56
	6.6.4 Ansehen der gespeicherten Messwerte	56
	6.7 Parameter / Vor-Ort-Kalibrierung	56
	6.7.1 Vor-Ort-Kalibrierung	57
7	VERSAND	58
<i>.</i>	7.1 Vorbereitungen für Verpackung und Versand	58
	The second	

Liste der Tabellen

Tabelle 1	Parameter der Hauptanzeige	
Tabelle 2	Parameter der Alarm-Anzeige	21
Tabelle 3	Parameter der Kalibrieranzeige	22
Tabelle 4	Parameter der Überwachungsanzeige	
Tabelle 5	Parameter der Messanzeige	
Tabelle 6	Parameter der Ausgänge-Anzeige	
Tabelle 7	Parameter der Bildschirm (HMI)-Anzeige	
Tabelle 8	Parameter der Echtzeituhr-Anzeige	
Tabelle 9	Parameter des Software-Kommunikationsbildschirms	
Tabelle 10	Parameter der Ethernet-Anzeige	
Tabelle 11	Modbus Register-Liste	71
	5	

Liste der Abbildungen

Abb. 1	Messsystem	2
Abb. 2	Interne Probenahme-Optionen	5
Abb. 3	Netzanschluss	7
Abb. 4	Rückwand-Anschlüsse	9
Abb. 5	Typischer Gas-Anschluss	10
Abb. 6	Initialisierung des Overlays	12
Abb. 7	Anzeige während der Heizperiode	12
Abb. 8	Typische Anzeige	14
Abb. 9	Menü-Struktur.	15
Abb. 10	Hauptanzeige	16
Abb. 11	Vollbild-Modus	18
Abb. 12	Vollbild-Messkurve	18
Abb. 13	Status-Anzeige	19
Abb. 14	Messwerterfassungsanzeige	20
Abb. 15	Front Panel	20
Abb. 16	Alarm-Anzeige	21
Abb. 17	Bildschirm "Feldkalibrierung	22
Abb. 18	Feldkalibrierung Bildschirm 2	24
Abb. 19	Feldkalibrierung Bildschirm 3	24
Abb. 20	Feldkalibrierung Bildschirm 4	25
Abb. 21	Feldkalibrierung Bildschirm 5	25
Abb. 22	Überwachungsanzeige	26
Abb. 23	Anzeige des Einricht-Menüs	27
Abb. 24	Messanzeige	28
Abb. 25	Trägergas-Bildschirm	29
Abb. 26	Messbildschirm	30
Abb. 27	Externe Optionen	31
Abb. 28	Feste Optionen	31
Abb. 29	Atmos. Option	32
Abb. 30	Bildschirm "Benutzer-Gas-Setup	32
Abb. 31	Ausgänge-Anzeige	33
Abb. 32	Bildschirm (HMI)-Anzeige	34
Abb. 33	Echtzeituhr-Anzeige	35
Abb. 34	Software-Kommunikationsbildschirm	36
Abb. 35	Ethernet-Anzeige	36
Abb. 36	Bildschirm Kalibrierungshistorie	37
Abb. 37	Informationsanzeige	37
Abb. 38	Messzyklus (Phase 1) – Fluss des trockenen Messgases	41
Abb. 39	Messzyklus (Phase 2) – Kalibriergasfluss	42
Abb. 40	Kalibrierzyklus (Phase 1) – Fluss des trockenen Messgases	43
Abb. 41	Kalibrierzyklus (Phase 2) – Messgasfluss	44
Abb. 42	Typisches QMA401 Kalibrier-Zertifikat	48

Liste der Anhänge

Anhang A	Technische Spezifikationen60	
Anhang B	Berechnung des Umrechnungsfaktors für die Gasgemische	62
Anhang C	Modbus Halte-Register-Liste	
-	C.1 Sollwerte und Bereiche	.81
	C.2 Gase für die Gas-Korrekturwerte	82
Anhang D	Qualität, Recycling und Gewährleistung	.84
Anhang E	Rücksendungsdokumente und Erklärung über Dekontamination	86

Sicherheit

Der Hersteller garantiert die Betriebssicherheit dieses Geräts nur dann, wenn es genauso, wie im Handbuch beschrieben, verwendet wird.

Dieses Handbuch enthält alle Nutzungs- und Sicherheitsanweisungen, die bei der Installation, zum sicheren Betrieb und bei der Instandhaltung des Geräts eingehalten werden müssen. Vor Beginn der Installation und der Inbetriebnahme dieses Geräts sollte die gesamte Bedienungsanleitung durchgelesen und verstanden werden. Für die Installation und den Betrieb sollte nur entsprechend qualifiziertes Personal eingesetzt werden.

Die Installation und der Betrieb dieses Geräts müssen in Übereinstimmung mit den vorliegenden Vorschriften sein und entsprechend den Bestimmungen der erteilten Sicherheitsbescheinigungen erfolgen. Eine von den Vorgaben dieser Bedienungsanleitung abweichende fehlerhafte Installation oder ein fehlerhafter Einsatz dieses Geräts bzw. ein Betrieb entgegen des Bestimmungszwecks hat den Verlust jeglicher Garantieansprüche zur Folge.

Dieses Produkt erfüllt die wesentlichen Schutzanforderungen der betreffenden EU-Richtlinien. Weitere Einzelheiten zu eingehaltenen Normen stehen im Anhang A, Technische Spezifikationen. Elektrizität und unter Druck stehendes Gas können gefährlich sein. Deshalb darf dieses Gerät nur von entsprechend ausgebildetem Fachpersonal installiert und bedient werden.

Warnhinweise

Dieses Gefahrensymbol wird verwendet, um Bereiche zu kennzeichnen, in denen potenziell gefährliche Arbeitsabläufe unter besonderer Beachtung der Sicherheit für das Betriebspersonal durchgeführt werden müssen.

Dieses Gefahrensymbol wird verwendet, um Bereiche zu kennzeichnen, in denen potenziell die Gefahr eines Stromschlags besteht.

Elektrische Sicherheit

Elektrische Sicherheit ist dann gewährleistet, wenn die hier vorliegenden Vorschriften eingehalten werden und alle örtlichen Anforderungen an Betrieb und Installation an dem zur Nutzung vorgesehenen Ort beachtet werden. Das Gerät ist sicher ausgelegt, wenn es unter Einhaltung der Anweisungen und mit den vom Hersteller gelieferten Optionen und dem Zubehör benutzt wird. Weitere Einzelheiten dazu finden Sie in Kap. 2 (Installation).

Drucksicherheit

Für den zufriedenstellenden Betrieb muss an dieses Gerät ein unter Druck stehendes Gas angeschlossen sein. Beachten Sie bitte alle betreffenden Hinweise in diesem Handbuch sowie alle örtlichen Betriebs- und Installationserfordernisse des vorgesehenen Einsatzortes. Weitere Einzelheiten dazu finden Sie in Kap. 2 (Installation).

Gefahrenstoffe (WEEE, RoHS3 & REACH)

Dieses Gerät enthält keines der in der SVHC-Liste (Substances of Very High Concern) aufgeführten verbotenen Materialien. Während des normalen Betriebs ist es für den Benutzer nicht möglich, in Kontakt mit gefährlichen Substanzen zu geraten. Dieses Gerät ist zum Recyceln geeignet, außer den in den betreffenden Kapiteln dieses Handbuchs aufgeführten Komponenten.

Kalibrierung (Werksvalidierung)

Vor dem Versand wird das Gerät einer strengen, auf Standards rückführbaren Werkskalibrierung unterzogen. Aufgrund der systemimmanenten Stabilität dieses Messgeräts ist es beim Einsatz unter normalen Betriebsbedingungen nicht erforderlich, den Analysator regelmäßig im Werk zu rekalibrieren. Das Gerät sollte für viele Jahre mit Grundmaßnahmen zur Instandhaltung, der Reinigung und regelmäßiger Vor-Ort-Kalibrierung mit der internen Referenz (Feuchte-Generator) oder einer bekannten externen Referenz zuverlässig arbeiten.

Es gibt einige Verbrauchteile, die regelmäßig zu ersetzen sind:

- Feuchte-Generator typische Einsatzdauer ca. 3 Jahre
- Trockenmittel-Einsatz typische Einsatzdauer ca. 2 Jahre, was jedoch vom Feuchtegehalt des Messgases abhängig ist. Je trockener das Messgas, desto länger die Standzeit des Trockenmittels.

Michell Instruments bietet für dieses Gerät einen Service zum Erhalt der Rückführbarkeit auf nationale Standards an. Es wird empfohlen, diesen Service jährlich in Anspruch zu nehmen. Weitere Information bekommen Sie bei der lokalen Niederlassung von Michell Instruments oder einer Vertretung (www. michell.com).

Reparatur und Instandhaltung

Außer den für die weiter unten beschriebene regelmäßige Betriebswartung erforderlichen vom Anwender austauschbaren Komponenten ist das Gerät ausschließlich durch den Hersteller oder einen zugelassenen Servicehändler zu warten. Kontaktinformationen zu allen Filialen von Michell Instruments finden Sie unter www.michell.com.

Abkürzungen

٨	American
A	Ampere
AC	Wechselstrom
dulli	Druck-Einheit (athosphansch)
Dara	Druck-Einheit (= $100 \text{ kP} \text{ oder } 0.987 \text{ atm}$) (absolut)
baru	Druck-Einneit (=100 kP oder 0,987 atm)
°C	Grad Celsius
٥F	Grad Fahrenheit
EU	Europäische Union
h	Stunde
Hz	Hertz
IEC	International Electrotechnical Commission IP Internet-Protokoll
ml/min	Milliliter pro Minute
mg/m ³	Milligramm pro Kubikmeter
lbs/MMscf	Pfund pro Million Standard-Kubikfuß
mA	Milliampère
mg/Nm ³	Milligramm pro Normal-Kubikmeter
ml/min	Milliliter pro Minute
min	Minute(n)
mmHg	Millimeter Quecksilbersäule
Pa	Pascal
ppm _v	Teile pro Million (volumenmäßig)
ppm _w	Teile pro Million (gewichtsmäßig)
psia	Pfund pro Quadratzoll (absolut)
psiq	Pfund pro Quadratzoll (gemessen)
rF	relative Feuchte
RS485/232	serielle Schnittstelle
RTC	Echtzeituhr (real time clock)
RTU	Fernbedienungseinheit (Remote Terminal Unit)
sccm	Standardkubikzentimeter pro Minute
SD	Speicherkarte
UART	Universal-Asynchron-Receiver/Transmitter USB Universeller Serieller Bus
V	Volt
	Zoll
٨	Delta
<u> </u> %	Prozent
0	Ohm
26	Viiii

Folgende Abkürzungen werden in diesem Handbuch verwendet:

1 EINLEITUNG

1.1 Allgemeines

Der QMA401-Feuchte-Analysator bietet eine zuverlässige, schnelle und genaue Messung des Gehalts an Spurenfeuchte in einem breiten Anwendungsbereich, in dem das Einhalten von geringst möglichen Feuchteniveaus von entscheidender Wichtigkeit ist.

Der kontrastreiche LCD-Touch-Screen stellt alle Messwerte in einem für den Anwender eindeutigen und verständlichen Format dar. Die Hauptanzeige umfasst auch ein Echtzeit-Trenddiagramm und Alarm-Anzeigen basierend auf dem NAMUR 102-Standard. Eine leistungsfähige und intuitive Bedienanzeige ermöglicht das unkomplizierte Konfigurieren der Geräteparameter, die Überwachung und das Speichern von Messwerten.

Das Gerät ist mit zwei Anwender-konfi gurierbaren Analog-Ausgängen ausgestattet, verfügt über eine ModBus RTU-Kommunikation, ermöglicht die Ankopplung an ein Prozess-Visualisierungs-System (SCADA/DCS), oder den Einsatz der zugehörigen Applikations-Software auf einem PC. Regulierbare potentialfreie Alarm-Kontakte ermöglichen den direkten Einsatz des QMA401 in der Prozessregelung.

Der QMA401-Analysator bietet:

- ModBus RTU/TCP
- Messdatenspeicherung auf SD-Karte
- 2 Anwender-konfigurierbare Analog-Ausgänge
- Status- und Prozess-Alarme

Geringer & einfacher Wartungsaufwand

Hochentwickelte Geräte sind oft kompliziert und erfordern Erfahrung und besondere Sorgfalt in der Anwendung, was die Betriebskosten erhöht. Aufgrund seines geringen Serviceaufwands vor Ort unterscheidet sich der QMA401-Analysator davon. Der Trockenmitteleinsatz ist leicht nach dem Öffnen der Trockner-Serviceklappe auf der Geräterückseite auszutauschen. Der Feuchtegenerator weist eine durchschnittliche Standzeit von 3 Jahren auf bevor eine Wartung erforderlich wird.

Automatisierte Kalibrierung für ununterbrochene Zuverlässigkeit

Im QMA401-Analysator ist ein integriertes, automatisch arbeitendes Kalibriersystem eingebaut. Regelmäßige Kalibrierprozeduren zur Überprüfung der Leistungsfähigkeit des Sensors können auf Anforderung manuell oder automatisch (in vom Anwender vorgebbaren Intervallen und Tageszeitpunkten) initiiert werden. Dabei wird der Nachweis der Genauigkeit gegen den internen kalibrierten Feuchtegenerator oder eine externe Referenz erbracht. Der Feuchtegenerator, als Herz des gesamten Systems, ist mit einer auf NPL- und NIST-Standards rückführbaren Kalibrierung ausgestattet.

Während eines internen Kalibrierzyklus verhindert die Data-Hold-Funktion Unterbrechungen nachgeordneter Prozesse, indem sie die Analogausgänge während der Zeitdauer der Kalibrierung auf dem gleichen Wert hält (einfriert).

Integrierte Komponenten für die Probenahme

Der QMA401 bietet eine optionale Bypass-Anordnung zur Erhöhung der Transportgeschwindigkeit des Messgases.

Mit einem zusätzlichen Druckregler kann der Bereich des zulässigen Eingangsdrucks des Messgases erweitert und auch das Gerät gegen Druckstöße geschützt werden.

1.2 Funktionsweise

Die Schwingquarz-Technologie (QCM) zur Feuchtemessung basiert auf der Frequenzüberwachung eines hygroskopisch-beschichtetem Quarzkristalls mit einer spezifischen Empfindlichkeit für Wasserdampf.

Die massenmäßige Adsorption von Wasserdampf auf dem beschichteten Kristall erhöht die effektive Masse des Kristalls, wodurch sich die Resonanzfrequenz präzise und reproduzierbar ändert. Die Frequenzänderung ist proportional dem Wasserdampfdruck im Messgas und bietet eine direkte Messmethode des Feuchtegehalts.

Der Sorptionsprozess ist vollständig reversibel ohne einen langfristigen Drifteffekt und ermöglicht damit eine zuverlässige und wiederholbare Messung mit dem Feuchtesensor.

1.3 Messgasweg

Das Messsystem des QMA401 muss mit unter dem geforderten Druck stehenden Messgas versorgt werden, das über den VCR-Anschluss an der Geräterückseite angeschlossen wird. Der Druck des Messgases muss dem bei der Kalibrierung des Geräts entsprechen; die Druckwerte stehen im Kalibrier-Zertifikat. Die Flussrate wird automatisch geregelt.

Die Sensorzelle befindet sich am Ende des Sensorblocks und enthält neben dem Sensor die Referenz-Oszillatoren. Abb. 1 zeigt ein Prinzip-Schaltbild des Probenahmesystems:

Bezeichnungen			
DD	Trockenmittel-Einsatz	MG	Feuchte-Generator
MFC	Massen-Durchflussregler	V1, V2, V3	Magnetventile
QCH	Sensorzelle	HE1/HE2	Wärmetauscher
PS	Druck-Sensor	FC1	Volumenstrom-Regler

Abb. 1 Messsystem

1.4 Interne Probenahme-Optionen

Der QMA401 ist mit einem Druckregler oder einem Bypass-Dosierventil mit Durchflussregulierung verfügbar. Beide Optionen können unabhängig voneinander mit einem internen oder externen Partikelfilter konfiguriert werden.

- Druckregler
- Dosierventil mit Durchflussregulierung

S0 – Ohne Probenahmesysten. Mit 15µm integrierter Filatration

S1 – Eingangsdruckregler. Mit 15µm integrierter Filtration

S2 – Eingangsdruckregler und Bypass-Dosierventil mit Durchflussregulierung. Mit 15µm integrierter Filtration

S3 – Bypass-Dosierventil mit Durchflussregulierung. Mit 15 μ m integrierter Filtration

S4 – Eingangsdruckregler. Externer 15 μ m Filter wird geliefert

S5 – Eingangsdruckregler und Bypass-Dosierventil mit Durchflussregulierung. Externer 15µm Filter wird geliefert

S6 – Bypass-Dosierventil mit Durchflussregulierung. Externer 15µm Filter wird geliefert

Abb. 2 Interne Probenahme-Optionen

2 INSTALLATION

2.1 Hinweise zur Analysator-Lagerung

Damit das Gerät direkt für die Installation verwendet werden kann, sollte es nach den folgenden Richtlinien gelagert werden:

- Das Gerät muss in einem geschützten Bereich ohne direkter Sonneneinstrahlung oder Regen untergebracht sein.
- Das Gerät muss so aufbewahrt werden, dass die Möglichkeit eines Grundwasserkontaktes minimiert ist.
- Die Temperatur der Lagerungsumgebung muss zwischen -20 und +60°C liegen.
- Die Feuchte in der Lagerungsumgebung darf nicht kondensierend sein.
- Während der Lagerung darf der Analysator keinen korrosiv wirkenden Stoffen ausgesetzt sein.
- Das Gerät sollte mit dem eventuell mitgelieferten Probegas-Aufbereitungssystem zusammengebaut bleiben.
- Alle elektrischen Anschlüsse und Prozess-Anschlüsse müssen getrennt und abgedeckt bleiben.
- Alle Schutzüberzüge müssen bis zur Installation an ihrem Platz verbleiben.
- Dauert die Lagerung eine längere Zeit, so sollte der Deckel der Verpackungskiste entfernt werden, damit die Luft zirkulieren kann.
- Alle mit dem Gerät mitgelieferten Dokumentationen sollten aus der Verpackungskiste genommen und an einem sicheren Platz aufbewahrt werden, um ihre Unversehrtheit zu gewährleisten.

Für die Zeitdauer von der Installation des Geräts bis zur Erstinbetriebnahme sollten folgenden Vorsichtsmaßnahmen getroffen werden:

- Das Gerät und das zugehörige Probenahmesystem, soweit geliefert, müssen von dem Messgas getrennt und das Gerätegehäuse geschlossen bleiben, um die Schutzart aufrecht zu erhalten.
- Die Gehäuseheizung bzw. das Regelthermostat des Probenahmesystems sollte eingeschaltet sein, falls die Lufttemperatur unter +5°C fallen könnte.
- Für die Inbetriebnahme sind dann für den Analysator und das Probenahmesystem die in dieser Bedienungsanleitung stehenden Anweisungen zu befolgen.

War das Gerät zuvor in Betrieb, sollten vor einer Einlagerung folgende Vorsichtsmaßnahmen getroffen werden:

- Nach dem Abtrennen der Messgasleitungen muss das gesamte System mit trockenem Stickstoff gespült werden, bevor der Analysator ausgeschaltet wird.
- Alle Anschlüsse und Ports (Gas und elektrisch) des Analysators oder des Probenahmesystems, soweit geliefert, sollten abgedeckt werden.
- Wird das Gerät nicht von seinem Aufstellungsplatz entfernt, sollte die elektrische Erdung des Analysators angeschlossen bleiben.

2.2 Auspacken des Geräts

Öffnen Sie die Verpackungskiste und packen Sie das Gerät vorsichtig aus.

HINWEIS: Bewahren Sie die Verpackung auf, um damit das Gerät zum Kalibrieren oder Instandsetzen sicher ins Werk schicken zu können.

Die Zubehörschachtel sollte folgende Teile enthalten:

- rückführbares Kalibrier-Zertifikat
- SD-Speicherkarte
- USB-Anschlusskabel
- IEC-Netzkabel
- CD mit Applikationssoftware
- Bedienungsanleitung

Sollte irgendetwas davon fehlen, verständigen Sie bitte umgehend Ihren Lieferanten.

2.3 Elektrische Anforderungen

Der QMA401-Analysator akzeptiert eine Stromversorgung mit folgender Spezifikation:

Spannung	85264 V AC
Frequenz	4763 Hz
Stromverbrauch	150 VA

Sicherung

Im Gerät ist eine Sicherung 5 x 20mm 2,5 A H 250 V Slo-Blow nach IEC 60127-2 eingebaut. Eine Ersatzsicherung ist beim Service von Michell Instruments erhältlich.

Stromanschluss

Das Gerät verfügt auf der Rückseite über eine IEC C13-Buchse für den Stromanschluss.

Der QMA401 wird mit einem 2 m langen IEC-Kabel geliefert. Die IEC-Buchse befindet sich auf der rechten Rückseite des Geräts. An der Netzstrom-Eingangsbuchse befindet sich ein EIN/AUS-Schalter. Verwenden Sie nur ein geeignetes abnehmbares Netzkabel.

Abb. 3 Netzanschluss

Die Alarmausgänge bestehen aus vier Sätzen von Umschaltrelaiskontakten: ein Satz für INTERNE STÖRUNGEN und drei Sätze für PROZESSalarme. Alle Kontakte sind für 24 V, 1A ausgelegt. **HINWEIS: Dieser Wert darf nicht überschritten werden.**

Gerätekennwerte

Dieses Produkt ist so ausgelegt, dass es mindestens unter den folgenden Bedingungen sicher ist: im Temperaturbereich von -40...+60 °C (-40...+148 °F), bei maximal 80 % relativer Luftfeuchtigkeit für Temperaturen bis +31 °C (88 °F), die linear auf 50 %rh bei 50 °C (+122 °F) abnimmt. Überspannungskategorie II. Verschmutzungsgrad 2. Höhenlage bis 2000 m. Nur für Innenräume geeignet.

Vollständige Betriebsparameter siehe Anhang A, Technische Spezifikation.

2.4 Anschlüsse auf der Geräte-Rückseite

1	Netzanschluss	IEC-Anschlussbuchse, Ein/Aus-Schalter & Sicherung			
		USB			
			A		
		RS485 (Modbus)	В		
			G		
			NC1		
			NO1		
		Alarms 1 & 2	COM1		
			NC2		
2	Elektrische Anschlüsse #1		NO2		
			COM2		
			NC3		
			NO3		
		Alarms 3 & 4	СОМЗ		
			NC4 – Analysator Status Alarm		
			NO4 NO bei Warnung/Fehler		
		Alarmrelais: SPDT	Form C geeignet für Signalkreise 24 V DC 1A		
3	Bypass-Durchflusseinstellu	ng			
4	Ethernet-Anschluss		1		
		Externe +24V			
		Druckmessung	Signal		
5	Elektrische Anschlüsse #2		OP1+		
		Analog-Ausgang	OP1-		
		Analog-Ausgang	OP2+		
			OP2-		
6	6 Kontrolle des Einlassdrucks				
7	7 Trockner-Modul				
8	Gasauslass				
9	Gaseinlass				

2.5 Drucksicherheit

WARNUNG: Unter Druck stehendes Gas ist gefährlich und sollte nur von entsprechend geeignetem Fachpersonal gehandhabt werden.

Lassen Sie es unter KEINEN Umständen zu, dass das Gerät mit einem höheren als dem spezifizierten Betriebsdruck beaufschlagt wird.

Damit die Kalibrierung gültig bleibt, muss der QMA401 mit dem im Kalibrierzertifikat angegebenem Druck betrieben werden; typisch ist ein Messgasdruck von 1 barÜ (14.5 psig) mit Gasauslass unter atmosphärischem Druck. Bei Einsatz der Druck-Überwachungsoption darf der Druckaufnehmer nie den maximal festgesetzten Betriebsdruck von 1 barÜ (14,5 psig) überschreiten.

2.6 Anschluss der Gas-Versorgungsleitungen

Die Anschlüsse für das Messgas befinden sich auf der Rückseite des Geräts (s. Abb. 5) jeweils als 1/4[°]-VCR-Port für den Gaseinlass und Gasauslass. Alle Anschlüsse sollten aus hochwertigem Edelstahlrohr ausgeführt werden.

HINWEIS: Die außerhalb des Geräts benötigten Gas-Kupplungen sind nicht Lieferbestandteile des Geräts, können jedoch als Zubehör bei Michell Instruments bestellt werden (Näheres unter www. michell.com).

Abb. 5 Typischer Gas-Anschluss

Herstellen eines Anschlusses an der 1/4"-VCR-Rohrverschraubung:

- 1. Stecken Sie die Dichtung mit ihrem Haltering (8) über das Ende des VCR-Adapters (5).
- Positionieren Sie das mit der Dichtung (8) versehene Ende des VCR-Adapters (5) über die VCR-Buchse (9) und ziehen die Sicherungsmutter (7) handfest an, um den Adapter an der Buchse zu befestigen.
- 3. Ziehen Sie die Sicherungsmutter (7) mit einer 1/8-Umdrehung fest.

Verbindung eines VCR-Anschlusses mit einem 1/4"-Swagelok-Rohrleitungsadapter (als Zubehör erhältlich):

- Schneiden Sie ein ¼"-Edelstahlrohr (1) auf passende Länge ab und biegen Sie es, falls erforderlich, um es der Einbaulage des Geräts anzupassen. HINWEIS: Um den Anschluss an den Adapter (5) zu erleichtern, sollten wenigstens 75mm (3") des aus dem Adapter herausragenden Rohres gerade sein.
- 2. Entfernen Sie alle Grate oder Metallspäne, die dem Rohr anhaften.
- 3. Schieben Sie das Rohr (1) durch die Sicherungsmutter (2) und die hintere Klemmhülse (3).
- 4. Schieben Sie die vordere Klemmhülse (4) über das Edelstahlrohr (1), das konische Ende in Richtung des Adapters (5).
- Schieben Sie das Edelstahlrohr (1) so weit wie möglich in den Adapter
 (5) hinein und ziehen Sie die Sicherungsmutter (2) handfest an.
- Fixieren Sie die Schlüsselflächen des Adapters (5) mit einem Schraubenschlüssel und schrauben Sie die Sicherungsmutter (2) fest. Dies drückt die vordere Klemmhülse (4) und die hintere Klemmhülse (3) auf das Rohr und bildet so einen gasdichten Verschluss. Vorsicht: Ziehen Sie nicht zu stark an. Die Klemmhülsen können brechen und die Integrität des Verschlusses zerstören.

Die Kupplungen können auf eventuelle Lecks durch Beaufschlagung des Systems mit Druck überprüft werden. Schließen Sie z.B. die Messgasleitung an den Prozess an und tragen Sie eine eigene Lösung zur Dichtigkeitsprüfung auf die Prüfanschlüsse (6), die sich auf der Sicherungsmutter (7) befinden. Entsteht ein Strom von Blasen, dann ist der Verschluss nicht dicht. Entstehen keinerlei Blasen, so ist der Verschluss dicht.

Wird eine Leckage festgestellt, schrauben Sie die Sicherungsmutter (7) ein klein wenig fester zu bis es nicht mehr leckt. Kann die Leckage durch das weitere Festschrauben nicht beseitigt werden, schrauben Sie die Sicherungsmutter (7) auf und entfernen Sie die Kupplung vom Gerät.

Überprüfen Sie die Enden der Kupplung, ob die Oberflächen noch völlig in Ordnung sind und bringen Sie dann eine neue Dichtung (8) an; wiederholen Sie die obige Prozedur mit anschließender Dichtigkeitsüberprüfung.

3 BETRIEB

Dieses Kapitel beschreibt sowohl den allgemeinen Betrieb des Analysators als auch das Einrichten und Ändern der Standard-Parameter, falls dies erforderlich werden sollte.

Vor Betriebsbeginn muss das Gerät an eine passende Stromversorgung und die benötigten Analog- und Alarm-Ausgänge an die externen Systeme angeschlossen werden (wie in Kap. 2 beschrieben). Das Gerät muss ebenfalls installiert und mit einer Messgasleitung verbunden sein, die ein für den zu überwachenden Prozess repräsentatives Gas enthält.

3.1 Allgemeine Information zum Betrieb

Der QMA401 Spurenfeuchte-Analysator arbeitet völlig automatisch und benötigt nach der Inbetriebnahme nur wenige Eingriffe des Anwenders.

3.2 Erstinbetriebnahme

Nach dem Einschalten des Geräts erscheint während des Ladens des Menü-Systems eine Initialisierungsanzeige.

Abb. 6 Initialisierung des Overlays

Nach beendeter Initialisierung erscheint folgender Bildschirm:

Abb. 7 Anzeige während der Heizperiode

Die Aufheizphase dauert ungefähr eine Stunde; Zeit genug, um das interne Probenahmesystem mit Messgas zu spülen.

3.2.1 Regelgeber Sensor DruckDer Sensor

Druck des QMA401 muss dem angegebenen Druck auf dem Kalibrierzertifikat entsprechen, damit die Kalibrierung gültig ist.Um den Sensordruck zu steuern, wird ein Druckregler am Eingang des Analysators benötigt.

Ein integrierter Druckregler kann als Option bei der Bestellung geliefert werden.

Ein integrierter Druckregler (für einen Eingangsdruck von 300 bar) kann als Option bei der Bestellung mitgeliefert werden. Andernfalls wählen Sie bei der Auswahl eines externen Druckreglers einen für den Einsatz in hochreinem Gas konzipierten Regler mit einem Gehäuse und einer Membran aus rostfreiem Stahl, um die Auswirkungen auf die Reaktionsgeschwindigkeit bei der Messung trockener Proben zu minimieren.

Einstellen des Eingangsdrucks:

- 1. Schalten Sie den Analysator ein und warten Sie bis der Ofen warm ist, bevor Sie fortfahren.
- 2. Auf dem Bildschirm wir der aktuelle "Sensor Druck" in der Zelle angezeigt.
- 3. Verwenden Sie den Druckregler, um den Druck im Sensor, auf den im Kalibrierzertifikat angegeben Druck anzupassen.

Hinweis: Der Druck am Ausgang sollte atmosphärischen sein, es sei denn, auf dem Kalibrierzertifikat ist etwas anderes angegeben.

4. Machen Sie sich mit dem Menüsystem des Analysators und dem Setup derParameter in dem nächsten Abschnitt vertraut. Bevor eine Messung durchgeführt wird, stellen Sie sicher, dass das richtige Trägergas im Menüsystem ausgewählt wurde.

3.2.2 Einrichten des Analysators

Während der Aufheizphase sind alle Funktionen mit Ausnahme der HMI Einstellungen deaktiviert. Während dieser Zeit muss die Trägergas-Einstellung, für das zu messende Gas richtig eingestellt sein. Eine Reihe von voreingestellten Gasarten sind hinterlegt – für Proben mit einer anderen Mischung von Gaskomponenten, muss der Gasumwandlungsfaktor entsprechend Anhang B berechnet werden.

- Temperatur und Druckeinheiten
- Druck Eingang
- Alarm-Konfiguration
- Analog-Ausgang-Konfiguration
- Vor-Ort-Kalibrierparameter
- Echtzeituhr

Nachdem der Ofen aufgeheizt ist, erscheint die Hauptanzeige mit den Standard-Parametern und Einheiten (Beispiel s.u.):

Abb. 8Typische Anzeige

Mit dem Druckregler am Gaseingang kann der Druck des Messgases solange justiert werden, bis der vom internen Drucksensor gemessene Wert gleich dem im Kalibrierzertifikat enthaltenen angezeigt wird. Der Druck am Gasauslass sollte atmosphärisch sein, falls im Kalibrierzertifikat nichts anderes vermerkt ist.

3.3 Menü-Struktur

Michell Instruments

3.4 Beschreibung of Measured Parameters

Moisture content ppm _v	Teile pro Million von H ₂ O – Volumen-bezogen
Moisture content ppm _w	Teile pro Million von H ₂ O – Gewichts-bezogen
Moisture content mg/m ³	Milligramm H ₂ O pro Kubikmeter Gas
Water Vapor Pressure Pa	Wasserdampf-Druck in Pascal
lbs/MMscf	Pfund H ₂ O pro Million Standard-Kubikfuß
Frost Point	Frost-Punkt-Temperatur entweder eines idealen Gases oder von Erdgas, abhängig von den Optionen, die in der Messanzeige eingestellt wurden.
Oven Temperature	Ofen-Temperatur der internen Heizung
Flow	Gas-Flussrate
Cell Pressure	vom internen Druckaufnehmer gemessener Druck
Ext. Pressure	von einem externen Druckaufnehmer (falls eingesetzt) gemessener Druck

3.5 Hauptanzeige

Abb. 10 Hauptanzeige

Parameter	Beschreibung		
Parameter 1 & 2	aktuelle Messwertanzeige der gewählten Anzeige-Parameter		
Graph	aktuelle Messwertkurve von Parameter 1		
Alarm 1, 2 & 3	aktuelle Statusanzeige der Alarme Mögliche Alarm-Stati: Low – Alarm-Typ ist auf "niedrig" gesetzt und wurde ausgelöst, weil der gewählte Parameter unter dem Grenzwert liegt OK – Alarm ist nicht ausgelöst High – Alarm-Typ ist auf "hoch" gesetzt und wurde ausgelöst, weil der gewählte Parameter über dem Grenzwert liegt Trip – Der Alarm wurde zuvor ausgelöst, der gewählte Parameter ist dann wieder innerhalb der zulässigen Grenzen		
Alarm 4 Internal	Analysatorstatus Alarmrelais Aktiviert für Warnung/Fehler Auswahl im Modbus Register 9 (siehe Anhang D)		
Warnings	Statusanzeige der internen Alarme Mögliche Alarm-Stati: OK, WARNING		
Graph Delta	Wird als ΔX angezeigt (wobei X der aktuell ausgewählte primäre Messparameter ist) - Zeigt die Differenz zwischen den minimalen und maximalen Messwerten der Grafik an.		
Instrument Mode	Anzeige des aktuellen Geräte-Modus Mögliche Geräte-Modi: Measure – Der QMA401 führt einen Messzyklus durch. Cal Internal – Der QMA401 führt eine Selbst-Kalibrierung mit der internen Referenz durch Cal External – Der QMA401 führt eine Selbst-Kalibrierung mit einer externen Referenz durch Heating – Die Heizung ist in Betrieb, um den Sollwert zu erreichen		
Oven Temperature/Next Mode	Countdown-Anzeige für den nächsten Modus. Falls sich der QMA401 im Aufwärm-Modus befindet, wird dieser Parameter durch den aktuellen Temperaturmesswert des Ofens ersetzt		

 Tabelle 1
 Parameter der Hauptanzeige

3.5.1 Vollbild-Modus

Um den Vollbild-Modus zu erhalten, drücken und halten Sie auf der Hauptanzeige den groß darzustellenden Mess-Parameter.

Um zurück zur Hauptanzeige zu kommen, drücken Sie irgendwo auf den Bildschirm.

Abb. 11 Vollbild-Modus

3.5.2 Messkurve in voller Bildschirmgröße

Anzeige der Messkurve des Parameters 1 in voller Bildschirmgröße.

Um die Vollbild-Messkurve zu erhalten, drücken Sie auf der Hauptanzeige auf den Bereich der Grafikanzeige.

Um zurück zur Hauptanzeige zu kommen, drücken Sie irgendwo auf den Bildschirm.

Abb. 12 Vollbild-Messkurve

3.6 Untermenüs der Hauptanzeige

Folgende Untermenüs können auf der Hauptanzeige gewählt werden:

Warnungen Protokollierung Alarme Feld Kal Einstellungen Überwachen

3.6.1 Warnbildschirm

Mit den Tasten auf dieser Anzeige kann man die internen Alarme ein- oder ausschalten. Ist ein bestimmter Alarm deaktiviert, so wird der interne Alarm nicht ausgelöst.

Warnings			ž
 Oven Temperature Control Enclosure Temperature Flow Control Cell Pressure Sensor External Pressure Sensor Instrument Drift Beat Frequency 	× × × × ×	 Oven Temperature Senso Output 1 Output 2 Oscillator Communications Ethernet Communications Dryer Service Moisture Gen. Service 	s ×

Abb. 13 Status-Anzeige

Statusanzeige des mit jedem der oben stehenden Parametern verbundenen internen Alarms durch folgende Symbole:

Value	Beschreibung		
Off		Alarm deaktiviert	
On		Alarm aktiviert — kein Fehler	
ON	- <u>}</u> }-	Alarm aktiviert – Fehlerfall	

3.6.2 Messwerterfassungsanzeige

Überwacht die Speicherung der erfassten Messwerte auf die SD-Karte.

Logging				2
Log Interval	1	Interval Units	Cy	/cles
Auto Start	Off	Start	00/00/00	00:00
Auto Stop	Off	Stop	00/00/00	00:00
Status: Filename:	Stopped		ST	ART

Abb. 14 Messwerterfassungsanzeige

Parameter	Beschreibung
Log Interval	Häufigkeit der Datenerfassung zur Speicherung in der Protokolldatei
Interval Units	verfügbare Optionen: Zyklen, Sekunden
Status	Anzeige des Speicherstatus bzgl. der Datenerfassung, z.B. SD-Karte voll
Filename	Automat. generierter Dateiname, basierend auf aktueller Zeit & Datum

Die SD-Karte sollte im FAT32-Modus formatiert sein.

Abb. 15 Frontplatte

3.6.3 Alarm-Anzeige

Abb. 16 Alarm-Anzeige

Parameter	Beschreibung		
Alarm Selector	Mit den Pfeiltasten links & rechts kann man zwischen den verschiedenen Alarmen hin- und herschalten.		
	verfügbare Optionen: Alarm 1, Ala	rm 2, Alarm 3	
Clear Latch	Löscht einen verriegelten Alarm.		
	Verfügbare Optionen: Ja, Freigege	ben	
Parameter	Auswahl des Parameters für den zugeverfügbare Optionen:Moisture Content ppmvFeuchteMoisture Content ppmwFeuchteMoisture Content mg/m³FeuchteMoisture Content mg/m³FeuchteWater Vapor Pressure PaWasserMoisture Content lbs/MMscfFeuchteFrost PointFrostputOven TemperatureOfen-TeFlow ml/minFlussraCell PressureSensorExternal PressureExtern	egehalt ppm _v gehalt ppm _v gehalt ppm _w egehalt mg/m ³ dampfdruck Pa egehalt lbs/MMscf unkt emperatur ite ml/min zellen-Druck er Druck	
Low	Eingabe des unteren Grenzwerts für den zugehörigen Alarm auf dem sich öffnenden Tastenfeld.		
Latch	Auswahl zwischen gehaltenem und nicht-gehaltenem Alarm. verfügbare Optionen: On, Off		
High	Eingabe des oberen Grenzwerts für den zugehörigen Alarm auf dem sich öffnenden Tastenfeld.		

 Tabelle 2
 Parameter der Alarm-Anzeige

3.6.4 Bildschirm "Feldkalibrierung

Field Calibration				2
Calibrate	Start	Cal Method	Ma	anual
Hold Cycles	0	Calibration Cycles		0
Cal Source	Internal			

Abb. 17 Bildschirm "Feldkalibrierung

Parameter	Beschreibung				
Calibrate	Startet eine Kalibrier-Prozedur, falls eine manuelle Kalibrierung gewählt wurde.				
Analog O/P	Schaltet die Data-Hold-Funktion ein und aus. Diese Funktion legt fest, o das letzte Messergebnis während einer laufenden Kalibrierung gespeiche wird.				
Hold	verfügbare Optionen: On, Off				
	Ist die Data-Hold-Funktion eingeschaltet, so kann der Bediener wählen, nach wie vielen Zyklen nach der Kalibrierung der letzte gemessene Wert gespeichert wird.				
	Auswahl zwischen einer externen oder der internen Kalibrierquelle. Wird die externe Kalibrierquelle gewählt, muss der Feuchtewert der externen Referenz in den Einstellungen der externen Referenz eingegeben werden. verfügbare Optionen: External, Internal				
Cal Source	External Cal Source – ist diese Option gewählt, muss der ppm-Wert der externen Feuchte-Referenz als Parameterwert in Ext Ref eingegeben werden.				
	Internal Cal Source – ist diese Option gewählt, kann der Parameter Cal Method auf manuell oder automatisch gesetzt werden.				

 Tabelle 3
 Parameter der Kalibrieranzeige

Parameter	Beschreibung			
	Umschalten zwischen manuellen und automatischen Kalibrier-Modus			
	verfügbare Option	en: Automatic, Manual		
Cal Method	Manual Cal Method – ist diese Option gewählt, muss zum Einleiten des Kalibriervorgangs die Start-Taste gedrückt werden. Beide Auswahlfelder für das Intervall und die Stunden sind ausgeblendet und die Start-Taste wird eingeblendet.			
	Automatic Cal Method – ist diese Option gewählt, müssen die folgenden Parameter eingerichtet werden und werden auf dem Bildschirm angezeigt. Der Kalibriervorgang beginnt zu dem Zeitpunkt, der sich aus den gewählten Parametern für Intervall und Stunde ergibt.			
	Interval (Days)	Häufi gkeit der automat. Kalibrierung pro Tag.		
	Hour	Die Stunde am Tag, zu der die automatische Kalibrierung starten soll.		
	Settling Cycles	Zeitdauer für den QMA401 zur Stabilisierung auf den neuen Feuchtegehalt (wie er vom internen Feuchte-Generator oder dem externen ppm- Wert vorgegeben wird), bevor die aktuellen Kalibrierzyklen ausgeführt werden.		
	Cal Cycles	Wahl der durchzuführenden Kalibrier-Zyklen.		

Tabelle 3Parameter der Kalibrieranzeige (Fortsetzung)

Wenn Analog O/P Hold ausgeschaltet ist, wird das Auswahlfeld "Hold Cycles" ausgeblendet, wie unten dargestellt:

Field Calibration				<u>7</u>
Calibrate Analog O/P Hold	Start Off	Cal Method	Ma	anual 0
Cal Source	Internal	Calibration Cycles		0

Abb. 18 Feldkalibrierung Bildschirm 2

Hold Cycles (Haltezyklen) - Wenn Analog O/P Hold (Analoges O/P-Halten) ausgewählt ist, kann der Benutzer auswählen, für wie viele Zyklen nach der Kalibrierung der letzte Messwert gehalten werden soll. Dies geschieht über die Bildschirmtastatur, die geöffnet wird.

Wenn eine externe Kalibrierungsquelle ausgewählt wird, muss der Benutzer die externe Referenzfeuchte in der Einstellung Ext Ref (ppm) eingeben.

Wenn eine interne Kalibrierungsquelle ausgewählt wird, ist das Auswahlfeld "Ext Ref" ausgeblendet (wie oben gezeigt). Wenn eine externe Kalibrierung gewählt wird, wird der Kalibrierungsmodus auf manuell umgestellt, d.h. eine automatische Kalibrierung kann nicht durchgeführt werden, wenn die externe Kalibrierungsquelle aktiv ist. Das Auswahlfeld "Kalibriermethode" ist ebenfalls ausgeblendet (siehe unten):

Field Calibration			
Calibrate	Start	Settling Cycles	0
Analog O/P Hold	On	Calibration Cycles	0
Hold Cycles	0		
Cal Source	External		
Ext Ref (ppm)	0.0001		

Abb. 19Feldkalibrierung Bildschirm 3

Wenn eine automatische Kalibrierung gewählt wird, beginnt die Kalibrierung zu der mit den Intervall- und Stundeneinstellungen gewählten Zeit. Dies geschieht über die Tastatur auf dem Bildschirm, die geöffnet wird. Wenn eine manuelle Kalibrierung ausgewählt ist, werden die Auswahlfelder "Intervall" und "Stunde" ausgeblendet, wie oben gezeigt. Wenn eine automatische Kalibrierung ausgewählt ist, werden die Auswahlfelder "Kalibrieren", "Kalibrierungsquelle" und "Ext Ref" ausgeblendet (siehe unten):

Field Calibration			2
Analog O/P Hold	On	Cal Method	Auto
Hold Cycles	0	Interval (Days)	0
		Hour of Day	0
		Settling Cycles	0
		Calibration Cycles	0

Abb. 20 Feldkalibrierung Bildschirm 4

- Intervall (Tage) Hier wählt der Benutzer aus, wie oft in Tagen eine Kalibrierung durchgeführt werden soll.
- Stunde des Tages Hier wählt der Benutzer die Stunde innerhalb des Tages aus, zu der die Kalibrierung stattfinden soll.
- Kalibrierungszyklen Hier wählt der Benutzer aus, wie viele Kalibrierungszyklen durchgeführt werden sollen.
- Einschwingzyklen Hier wählt der Benutzer aus, wie viele Einschwingzyklen nach der Kalibrierung hinzugefügt werden.

NB. Wenn eine manuelle Kalibrierung gestartet wurde, blendet die Seite alle Parameter aus und zeigt stattdessen den Countdown für die Kalibrierung und den Einschwingzyklus an. Dies ist unten zu sehen:

Field Calibration	
Calibrate Stop	
Settling Cycles Remaining Calibration Cycles Remaining	0

Abb. 21Feldkalibrierung Bildschirm 5

3.6.5 Überwachungsanzeige

Monitor			2
Moisture Content (ppm _v)	0.084	Ref Solenoid	On
Beat Freq (Hz)	0.0000	Sample Solenoid	Off
Delta Freq (Hz)	0.0000	Internal Cal Solenoid	Off
Enclosure Temperature (°	C) 0.0	Dryer vol. remaining (%)	0.00
Flow Rate (ml/min)	100.0	MG remaining (days)	0
Cell Pressure (barg)	3.00	SCF	0.000
External Pressure (barg)		MGV (ppm _v)	0.0001

Parameter	Beschreibung		
Moisture Content (ppm _v)	Live-Feuchtigkeitsmesswert in ppm _v		
Beat Frequency	Live-Überlagerungsfrequenzanzeige: die Frequenzdifferenz zwischen den beiden Quarzen.		
Delta Frequency	Live-Delta-Frequenzanzeige: die Frequenzdifferenz zwischen der Probe und der Referenzphase.		
Enclosure Temperature (°C)	Aktuelle Systemtemperatur.		
Flow Rate (ml/min)	Aktueller Messwert der Durchflussrate in ml/min.		
Cell pressure (barg)	Aktueller Messwert des internen Druckmessumformers.		
Ext. pressure (barg)	Aktueller Messwert des Prozessdrucks.		
Ref Solenoid	Zeigt den Zustand des Referenzmagneten an.		
Sample Solenoid	Zeigt den Zustand des Probenmagneten an.		
Internal Cal Solenoid	Anzeige des Zustands des internen Kalibrierungsmagnetventils.		
Dryer vol. remaining %	Verbleibende Lebensdauer des Trockners in %.		
MG remaining (days)	Verbleibende Lebensdauer des MG in Tagen.		
SCF	Während des letzten Kalibrierungszyklus eingestellter Sensorkorrekturfaktor.		
MGV	Wert des Feuchtegenerators.		

 Tabelle 4
 Parameter der Überwachungsanzeige
3.7 Einricht-Menü

Abb. 23 Anzeige des Einricht-Menüs

Mit den folgenden Untermenüs können die Geräte-Einstellungen geändert werden:

- Messung
- Ausgänge
- Bedienanzeige (HMI)
- Echtzeituhr
- SW-Kommunikation
- Cal Geschichte
- Über

3.7.1 Messanzeige

Measurement				
Carrier Gas	Air	Pressure Input	Exter	nal
DP Calculation	Ideal Gas	Ext 4mA	0.0	0
Purge	Off	Ext 20mA	0.0	0
		Pressure Unit		g

Abb. 24 Messanzeige

Parameter	Description
Carrier Gas	Auswahl der verschiedenen Träger-Gasarten verfügbare Optionen: Air, Ar, CH ₄ , C ₂ H ₂ , C2H ₄ , C ₂ H ₆ , C ₃ H ₆ , C ₃ H ₈ , C ₄ H ₁₀ , CO, CO ₂ , H ₂ , He, Kr, N ₂ , Ne, NH ₃ , NO, N ₂ O, O ₂ , Xe, User 1, User 2, User 3
	User Gas Entry: Wird ein kundenspezifi sches Trägergas ausgewählt, dann wird dieser Parameter auf der Messanzeige aufgeführt. Siehe Anhang B für weitere Informationen.
DP Calculation	Legt die Methode der Frostpunkt-Berechnung fest. verfügbare Optionen: ISO (ISO 18453) Ideal Gas, IGT (IGT Bulletin #8)
Pressure Input	Auswahl der Quelle für die Druckmessung. verfügbare Optionen: Atmos – Atmosphärischer Druck. Fixed – vom Anwender vorgebbarer Festwert. Ist diese Option gewählt, kann der Festwert eingegeben werden. External – Ein externer Druckaufnehmer ist angeschlossen. Ist diese Option gewählt, können Nullpunkt und Messbereich dieses Druckaufnehmers bei 4 und 20mA gewählt werden.
Purge Feature	Damit wird die Spülfunktion aktiviert oder deaktiviert (siehe Abschnitt 3.7.1.3).

 Tabelle 5
 Parameter der Messanzeige

3.7.1.1 Trägergas

Dient zur Auswahl eines anderen Trägergases. Wenn der Benutzer auf dieses Feld drückt, wird die folgende Seite geöffnet.

Carrier Gas			2
Air	Ar	CH4	C2H2
C2H4	C2H6	C3H6	C3H8
C4H10	СО	CO2	H2
Не	Kr	N2	Ne
NH3	NO	N2O	O2
Xe	User 1	User 2	User 3

Abb. 25 Trägergas-Bildschirm

Es gibt 20 verschiedene voreingestellte Gase, aus denen der Benutzer wählen kann, sowie 3 benutzerdefinierbare Voreinstellungen:

- Luft
- Argon
- Methan
- Acetylen
- Ethylen
- Ethan
- Propan
- Butan
- Propen
- Kohlenmonoxid
- Kohlendioxid
- Stickstoff

- Wasserstoff
- Helium
- Neon
- Krypton
- Ammoniak
- Stickstoffmonoxid
- Distickstoffoxid
- Sauerstoff
- Xenon
- Benutzer 1
- Benutzer 2
- Benutzer 3

Nach der Auswahl des Gases wird der Benutzer zur vorherigen Seite zurückgeführt.

VORSICHT!

Einige Gase können explosionsgefährlich sein. Vergewissern Sie sich, dass das Produkt vor dem Einschalten vollständig mit dem Messgas gespült wurde.

Bei Verwendung des Produkts in Verbindung mit explosionsgefährdeten Gasen: 1) Das Produkt sollte nur von entsprechend geschultem Personal bedient werden. 2) Vor dem Einschalten des Geräts muss eine Dichtheitsprüfung der Ein- und Auslassanschlüsse durchgeführt werden. 3) Der Messgasauslassstrom muss in geeigneter Weise - und leckfrei - in eine Umgebung geleitet werden, in der er sicher entlüftet werden kann. 4) Der Einsatzort des Produkts muss sich in einem angemessen belüfteten Bereich befinden, um sicherzustellen, dass die Gase im Falle einer Leckage jederzeit unter der UEG bleiben.

NB. Wenn User 1, 2 oder 3 als Trägergas gewählt wird, erscheint unter dem Umschaltfeld für das Trägergas ein neues Parameterfeld mit der Bezeichnung "User Gas Entry". Dies ist unten zu sehen.

Measurement				
Carrier Gas	User 1	Pressure Input	External	
User Gas	User 1	Ext 4mA	0.00	
DP Calculation	Ideal Gas	Ext 20mA	0.00	
Purge	Off	Pressure Unit	barg	

Abb. 26 Messbildschirm

Wenn die Option Benutzergas aus der Trägergasliste ausgewählt wird, kann der Benutzer die Benutzergaseinstellungen auf der Seite Benutzergas-Setup eingeben, die geöffnet wird. Weitere Informationen zur Berechnung der Anwenderdurchflusskorrekturfaktoren finden Sie in Anhang B.

3.7.1.2 TP Berechnungsmethode

Wählt die Berechnungsmethode für Taupunkt und Ibs/MMscf aus. Optionen sind:

- IGT wie im IGT Bulletin #8
- ISO gemäß ISO18453
- Ideales Gas

3.7.1.3 Bereinigen

Die Spülfunktion ermöglicht es dem Benutzer, die Sensorkristalle schnell mit einem trockenen Gas mit hohem Durchfluss zu spülen - dies ist ein Durchspülungs-/Reinigungsverfahren für den internen Gasweg, wenn das Gas gewechselt wird oder Wartungselemente getrennt werden sollen, um sicherzustellen, dass sie sauber sind. Dazu wird das Referenzmagnetventil aktiviert und das Kalibrier- und Probenmagnetventil deaktiviert. Die Durchflusskontrolle durch den MFC wird außerdem von 100 ml/min auf 400 ml/min erhöht. Durch diese beiden Maßnahmen kann das trockene Gas durch den Sensorblock fließen. Während dieser Zeit kann die Heizungssteuerung im Ofen aufgrund des erhöhten Stromverbrauchs der Magnetspule beeinträchtigt sein. In diesem Fall kann es etwa 20 Minuten dauern, bis der Ofen auf seinen Sollwert von $60^{\circ}C \pm 0,05^{\circ}C$ abgekühlt ist, und zwar über einen Zeitraum von mindestens 15 Minuten.

3.7.2 Druck Eingang

Wählt die Druckquelle aus. Optionen sind:

- Atmos.
- Festgelegt
- Extern

Wenn die Option "Extern" gewählt wird, wird das Auswahlfeld "Fest" ausgeblendet und durch die Auswahlfelder "Ext. 4mA" und "Ext. 20mA" ersetzt, wie unten dargestellt:

Abb. 27 Externe Optionen

Wenn die Option "Fest" gewählt wird, werden die Auswahlfelder "Ext. 4mA" und "Ext. 20mA" ausgeblendet und durch das Auswahlfeld "Fest" ersetzt, wie unten dargestellt:

Pressure Input	Fixed
Fixed	0

Abb. 28 Feste Optionen

Wenn die Option "Atmos." ausgewählt ist, werden die Auswahlfelder "Fixed", "Ext. 4mA" und "Ext. 20mA" ausgeblendet, wie unten dargestellt:

Abb. 29 Atmos. Option

- Fest Ermöglicht dem Benutzer die Eingabe des festen Drucks über die Bildschirmtastatur.
- Ext. 4mA Ermöglicht dem Benutzer die Eingabe des Drucks bei 4mA über die Bildschirmtastatur.
- Ext. 20mA rmöglicht dem Benutzer die Eingabe des Drucks bei 20mA über die Bildschirmtastatur.
- Druckeinheit Hier wird die aktuelle Druckeinheit angezeigt. Bitte beachten Sie, dass diese Einheit auf dieser Seite nicht geändert werden kann.

User Gas Setup		
Gas	Molecular Weight	FCF
User 1	0.00	0.000
User 2	0.00	0.000
User 3	0.00	0.000

Abb. 30 Bildschirm "Benutzer-Gas-Setup

- Gas Ermöglicht dem Benutzer die Eingabe eines eindeutigen Namens für das Gas über das Tastenfeld auf dem Bildschirm.
- Molekulargewicht Ermöglicht dem Benutzer die Eingabe des Molekulargewichts des Gases über die Bildschirmtastatur.
- FCF Ermöglicht dem Benutzer die Eingabe des Durchflusskorrekturfaktors über die Bildschirmtastatur. Siehe Anhang B für Anweisungen zur Berechnung des FCF.

3.7.3 Ausgänge-Anzeige

Outputs			2
	O ut	put 1	
Parameter	Ext. Pr. MPa	Low	0.00
Output Type	4-20mA	High	0.00
		Error Indication	LOW

Abb. 31 Ausgänge-Anzeige

Parameter	Beschreibung	
Output	Auswahl der benötigten Ausgänge	
Selector	verfügbare Optionen: Output 1, Output 2	
	Auswahl der verschiedenen Parameter für den jeweiligen Ausgang	
Parameter	verfügbare Optionen: Oven °C, ml/min, Cell Pr. barg, External Pr. barg, $H_2O \text{ ppm}_{V} H_2O \text{ ppm}_{W} H_2O \text{ mg/m}^3$, WVP Pa, lbs/MMscf, DP °C	
	Auswahl des Signal-Bereichs für den jeweiligen Ausgang	
Output Type	verfügbare Optionen: 1-5 V, 4-20 mA	
Min	Auswahl der unteren Grenze für den betreffenden Ausgang	
Max	Auswahl der oberen Grenze für den betreffenden Ausgang	
Error	Wählt das Niveau der mA-Fehleranzeige für die Ausgänge.	
Indication	verfügbare Optionen: 3.2mA, 21.4mA	

Tabelle 6Parameter der Ausgänge-Anzeige

3.7.4 Bildschirm (HMI)-Anzeige

HMI			2
Language	English	Temperature Unit	°C
Chart Period	24 hours	Pressure Unit	barg
Brightness	100	Flow Unit	ml/min
Signal Smoothing	Low		
Lock Screen Time	5 mins		

Abb. 32 Bildschirm (HMI)-Anzeige

Parameter	Beschreibung
Language	Auswahl der verschiedenen, verfügbaren Dialogsprachen
	Wahl der Zeitskala für die Messkurve
Chart Period	verfügbare Optionen: 5 mins, 30 mins, 1 hr, 5 hrs, 10 hrs, 24 hrs
	Festlegen der Bildschirm-Helligkeit in %
Brightness	verfügbare Optionen: 5100%
	Wählen Sie den Pegel des Glättungssignals.
Signal Smoothing	verfügbare Optionen: Niedrig, mittel, hoch
	Der Benutzer kann zwischen den verschiedenen Optionen
Lock Screen Time	für das Zeitlimit der Bildschirmsperre wechsein.
	verfügbare Optionen: 5 Min., 15 Min., 30 Min., Aus
	Wahl der anzuzeigenden Temperatur-Einheit
Temperature Unit	verfügbare Optionen: °C, °F
	Wahl der anzuzeigenden Druck-Messwerte
Pressure Unit	verfügbare Optionen: barg, bara, psig, psia, MPa, mmHg
	Wahl der Durchfluss-Einheit
Flow Unit	verfügbare Optionen: ml/min, sccm/min

 Tabelle 7
 Parameter der Bildschirm (HMI)-Anzeige

3.7.5 Echtzeituhr-Anzeige

RTC			2
Day Month	0	Hour Minute	00
Year	00		
Save Date	Yes	Save Time	Yes
Date	01/01/2000	Time	00:00

Abb. 33 Echtzeituhr-Anzeige

Parameter	Beschreibung
Day / Month / Year	Setzt das aktuelle Datum in der Echtzeituhr
Hour / Minute	Setzt die aktuelle Zeit in der Echtzeituhr
Save Date	Speichert das geänderte Datum
Save Time	Speichert die geänderte Zeit

 Tabelle 8
 Parameter der Echtzeituhr-Anzeige

3.7.6 Software-Kommunikationsbildschirm

Abb. 34 Software-Kommunikationsbildschirm

Parameter	Beschreibung
Instrument ID	Eingabe der Geräte-Adresse mit dem Tastenfeld
Protocol Wahl aus verschiedenen physischen Schnittstellen	
Address	Dies öffnet die Ethernet-Seite, auf der der Benutzer die Netzwerkeinstellungen konfigurieren kann.

Tabelle 9 Parameter des Software-Kommunikationsbildsch	nirms
--	-------

3.7.7 Ethernet-Anzeige

Ethernet					<u>7</u>
IP Address	0	0	0	0	
Subnet Mask	0	0	0	0	
Default Gateway	0	0	0	0	
Apply	Yes				

Abb. 35 Ethernet-Anzeige

Parameter	Beschreibung				
IP Address	statische Geräte-IP-Adresse in dem Netzwerk				
Subnet mask	Subnet-Maske des Netzwerks, an dem das Gerät angeschlossen ist.				
Default gateway	Standard-Gateway des Netzwerks, an dem das Gerät angeschlossen ist.				
Apply	Wendet geänderte Einstellungen an.				

 Tabelle 10
 Parameter der Ethernet-Anzeige

3.7.8 Historie der Feldkalibrierung

Calibrat	tion H	istory		2
SCF	Date	Cal Source	Cal Method	User Entry
0.000		Internal	Manual	
0.000	0/0/0	Internal	Manual	No
0.000	0/0/0	Internal	Manual	No
0.000	0/0/0	Internal	Manual	No
0.000	0/0/0	Internal	Manual	No
SCF selector	0.	000		

Abb. 36 Bildschirm Kalibrierungshistorie

Parameter	Beschreibung		
Sensor Correction Factor (SCF) Selector	Durchläuft die Ergebnisse jedes vorherigen Kalibrierungszyklus.		
Apply	Wendet den SCF aus dem ausgewählten vorherigen Kalibrierungszyklus an.		

3.7.9 Informationsanzeige

About		<u>入</u>
Control Firmware Oscillator Firmware Display Firmware Analyzer Serial Number Oven Serial Number	V1.01 V1.00 V1.25 12345 12346	
Michell Instruments QMA401 Trace Moisture Analyzer www.michell.com	SI	

Abb. 37 Informationsanzeige

Angezeigt werden hier die Firmware-Versionen des Analysators sowie Serien-Nummern.

3.8 Leitfaden zur Probenahme

Der Spurenfeuchte-Analysator QMA401 ist für den Betrieb in einem strömenden Gasfluss ausgelegt und geeignet, den Feuchtegehalt einer breiten Palette von Gasen zu messen. Kurz gesagt: Wirkt das Gas in Verbindung mit Wasserdampf nicht korrosiv auf das Probenahmesystem und die unedlen Metalle des Sensors, so ist es zur Analyse durch den QMA401 geeignet.

Der Analysator ist mit einer automatischen Regelung der Flussrate des Messgases ausgestattet. Das bedingt die Einhaltung des Messgasdrucks und des Gegendrucks entsprechend der im Kalibrierzertifikat aufgeführten Werte. Diese sind typisch 1 barÜ (14,5 psig) Messgasdruck mit Gasauslass auf atmosphärischen Druck und sollten mit einem hochwertigen Druckregler am Gaseinlass und einem Gegendruckregler am Gasauslass eingestellt und geregelt werden.

Beim Einrichten eines Probenahmesystems sollten folgende Richtlinien befolgt werden:

• Stellen Sie sicher, dass das entnommene Probegas repräsentativ für das zu analysierende Gas ist

Um sicherzustellen, dass das Probegas repräsentativ für das zu überwachende Prozessgas ist, sollte sich die Entnahmestelle des Probegases so nahe wie möglich an der zu messenden kritischen Stelle befinden – jedoch nie am Boden einer Rohrleitung, weil dort mitgeführte Flüssigkeiten in das Sensor-Element eindringen könnten.

• Halten Sie Toträume in Entnahmeleitungen möglichst klein

Toträume in Gasleitungen führen durch Kondensation zu Einschlüssen von Feuchte und damit zu erhöhten Reaktionszeiten des Systems und zu Messfehlern. Die eingeschlossenen Wassermoleküle werden an das vorbeiströmende Probegas sehr langsam abgegeben, wodurch sich der partielle Dampfdruck erhöht.

Vermeiden Sie zu viele T-Stücke, Kupplungen oder andere unnötige Verrohrungen. Die Probegas-Rohrleitungen sollten idealerweise für jede Anwendung eigens ausgelegt und nicht aus früheren Ausbauten angepasst werden.

• Entfernen Sie alle Partikel oder Öl aus dem Probegas

Partikel können den Sensor beschädigen. Führt das Gas Partikel aus Rückständen des Trockenmittels, Rohrablagerungen oder Rost mit, so ist in die Zuleitung ein Partikelfilter als Mindestschutz einzusetzen. Beratung hierzu bekommen Sie vom Technischen Verkauf von Michell Instruments.

• Verwenden Sie hochwertige Materialien für Rohrverschraubungen

Die Verrohrung für das Probegas muss dem Betriebsdruck dieses Gases widerstehen. Wo immer es möglich ist, sollten Rohrmaterial und Verschraubungen aus Edelstahl verwendet werden. Dies ist besonders bei niedrigen Taupunkten wichtig, denn anderes Material, z.B. Nylon, weist hygroskopische Eigenschaften auf und bindet Wasserdampf durch Kondensation an den Rohrwänden, was die Ansprechgeschwindigkeit reduziert und im Extremfall zu falschen Taupunktwerten führt. Für den vorübergehenden Einsatz oder falls eine Ausführung in Edelstahl nicht möglich ist, eignet sich ein qualitativ hochwertiges und dickwandiges PTFE-Rohr, das ähnliche Qualitäten wie Edelstahl aufweist.

Um die Reaktionszeit so kurz wie möglich halten, sollte die Verrohrungen so kurz und der Durchmesser so klein wie möglich sein. Dabei ist jedoch darauf zu achten, dass ein zu kleiner Durchmesser keine zu hohe Flussrate hervorruft, was zu Druckdifferenzen führt. Eine Reihe von hochpräzisen Druckleitungsverschraubungen, die für den Einsatz mit dem QMA401-Analysator geeignet sind, kann von Michell Instruments bezogen werden. Nähere Informationen zu den verfügbaren Komponenten bekommen Sie von Michell Instruments.

• Messbare Gase

Allgemein gilt: Wirkt das Gas in Verbindung mit Wasserdampf nicht korrosiv auf unedle Metalle, ist es für die Messung mit dem QMA401-Analysator geeignet. Gase, die Feststoffe mitführen, sollten vor der Zuführung in das Gerät gefiltert werden.

Vorsicht ist bei Gasmischungen angebracht, die neben Wasserdampf andere potenziell kondensierbare Komponenten, wie z.B. Öl, enthalten. Es ist sicher zu stellen, dass sich nur Wasserdampf in dem Probegas befindet. Denn Öl auf der Oberfläche der Sensoren kann nicht abdampfen, verunreinigt und beschädigt diese.

• Konstruktionswerkstoff

Alle Materialien sind für Wasserdampf durchlässig, weil die Wassermoleküle im Vergleich mit der Struktur von Feststoffen extrem klein sind, sogar im Vergleich mit der kristallinen Struktur von Metallen.

Viele Materialien enthalten Feuchte als Teil ihrer Struktur, besonders organische Stoffe, Salz und alles andere mit kleinen Poren. Es ist sehr wichtig sicherzustellen, dass die verwendeten Werkstoffe für die Anwendung geeignet sind.

Ist der Partialdruck von Wasserdampf, der an der Außenseite einer Druckluftleitung herrscht, höher als auf der Innenseite, wird sich der Wasserdampf der Atmosphäre natürlich durch das poröse Material gegen den Dampfdruck von trockener Luft durchdrücken. Wasser wird in die Druckluftleitung eindringen. Diesen Effekt nennt man Transpiration.

In einer langen Rohrleitung dringt sich gebildetes Wasser unweigerlich in jede andere Leitung, auch durch die widerstandsfähigsten Materialien. Feuchte am Auslass kann sich von Feuchte am Einlass unterscheiden. Das beste Material gegen Transpiration ist Edelstahl 316L.

Ebenso wichtig ist zu bemerken, dass Temperaturänderungen die Neigung dieser Materialien erhöhen können, die Feuchtigkeit der umgebenden Luft zu beeinflussen. Bei einer gegebenen Oberfläche und Gas-Zusammensetzung, führen ein erhöhter Leitungsdruck und eine verminderte Temperatur zu erhöhter Oberflächen-Adsorption.

• Oberflächenbeschaffenheit des Rohrmaterials

Bevorzugen sollte man immer Materialien mit einer glatten Oberfläche. Verwechseln Sie nicht die Begriffe "elektropoliert" mit einem mechanischen Poliervorgang. Um beste Ergebnisse zu erzielen, geht normalerweise dem Elektropolieren die mechanische Politur voraus. Ist für die vom Prozess oder dem Probenahmesystem vorgegebenen Materialien die Politur wählbar, so entscheiden Sie sich für das mit der glattesten Oberfläche, um schnelles Ansprechverhalten des Analysesystems zu gewährleisten.

• Rohrdurchmesser

Je größer der Durchmesser der Probegasleitung ist, umso mehr ist dieses Gas der Rohrwand ausgesetzt. Um die vorher erwähnten Effekte so gering wie möglich zu halten, ist es empfehlenswert, den kleinstmöglichen Rohrdurchmesser zu verwenden. Dies muss in Einklang mit dem gewünschten Ansprechverhalten sein. Abhängig von der Konfiguration, ist ein Rohrdurchmesser von 1/8" zu bevorzugen. Werden weitere Empfehlungen benötigt, so nehmen Sie bitte mit Michell Instruments Kontakt auf.

• Schwankungen der Umgebungstemperatur

Der QMA401-Analysator reagiert auf Feuchte-Fluktuationen sehr empfindlich und Umgebungstemperatur-Schwankungen beeinflussen die Gleichgewichtsbedingungen. In einem stabilen Umfeld befindet sich der Wasserdampfdruck in einem geschlossenen System im Gleichgewicht mit der Außentemperatur. Erhöht sich die Umgebungstemperatur, so wird die Energie an die Gasleitung und die sich in der Rohrwand befindlichen Wassermoleküle weitergegeben. Diese zusätzliche Energie kippt das ursprüngliche Gleichgewicht. Aufgrund des erhöhten Drucks wandern die sich in der Rohrwand befindlichen Wassermoleküle in Richtung des trockenen Gasstroms.

Kleine Moleküle, wie die des Wassers, werden solange durch die Rohrwand diffundieren bis das gesamte System ein neues Gleichgewicht erreicht hat. Dieser Effekt auf das Probenahmesystem kann minimiert werden, und zwar durch Einsatz einer Begleitheizung für die Messgasleitung und einer Isolation bzw. Heizung des Gehäuses des Entnahmesystems. Damit wird eine gleichbleibende Temperatur oberhalb der maximal auftretenden Umgebungstemperatur erreicht.

Es ist wichtig, die Temperatur aller Komponenten des Probenahmesystems zu überwachen, einschließlich der Regler und der Leitungen. Um Temperaturänderungen auszuschließen und lediglich die im Messgas enthaltene Feuchte zu messen, ist es deshalb dringend empfohlen, eine Begleitheizung für die Rohrleitungen einzusetzen.

3.9 Messzyklus

Am Anfang eines Messzyklus ist V1 angeregt. Damit kann das trockene Gas für eine Zeitdauer von 30 Sekunden zur Sensor-Zelle strömen, wie es in dem Diagramm durch den roten Pfad in Abb. 38 gekennzeichnet ist. Während dieser ersten Phase des Messzyklus wird die Frequenzdifferenz zwischen den Sensor- und Referenz-Kristallen in der Sensorzelle gemessen (sog. trockenes Stadium).

Die Pfade des Mess- und des Kalibriergases sind in grün gekennzeichnet. Während des ersten Messzyklus werden diese Pfade kontinuierlich gespült.

Bezeichnungen			
DD	Trockenmittel-Einsatz	MG	Feuchte-Generator
MFC	Massen-Durchflussregler	V1, V2, V3	Magnetventile
QCH	Sensorzelle	HE1, HE2	Wärmetauscher
PS	Drucksensor	FC1, FC2, FC3	Volumenstrom-Regler

Abb. 38 Messzyklus (Phase 1) – Fluss des trockenen Messgases

Nach einer 30 Sekunden dauernden Entnahmephase fällt V1 ab und sperrt die Zufuhr des trockenen Gasstroms zur Sensorzelle. V3 zieht an, um das Probegas für weitere 30 Sekunden zur Sensorzelle strömen zu lassen (roter Pfad in Abb. 39). Die Pfade für das Referenzgas und das Probegas sind Grün dargestellt. Diese Pfade werden während der zweiten Messphase kontinuierlich gespült.

Bezeichnungen				
DD	Trockenmittel-Einsatz	MG	Feuchte-Generator	
MFC	Massen-Durchflussregler	V1, V2, V3	Magnetventile	
QCH	Sensorzelle	HE1, HE2	Wärmetauscher	
PS	Drucksensor	FC1, FC2, FC3	Volumenstrom-Regler	

Abb. 39 Messzyklus (Phase 2) – Kalibriergasfluss

Während der zweiten Phase des Messzyklus wird erneut die Frequenzdifferenz zwischen dem Sensor- und dem Referenz-Kristall gemessen (sog. feuchtes Stadium). Die zwischen dem trockenen und dem feuchten Stadium gemessene Frequenzdifferenz ist nach einer entsprechenden Signalverarbeitung proportional zum Feuchtegehalt des Probegases.

3.10 Kalibrierzyklus

Um die Genauigkeit des Analysators aufrecht zu erhalten, kann sich dieses Gerät selbst kalibrieren und seine interne Referenz-Tabelle anhand der Messergebnisse abgleichen.

Dies wird wie folgt erreicht:

Der interne Feuchtegenerator erzeugt mit einem Permeationsrohr einen nominellen Feuchtegehalt von 0,5, 5 oder 50 ppmv; dieser Wert ist bei der Bestellung nach Kundenvorgabe festgelegt worden.

Die Kalibrierung wird in zwei Zyklenphasen durchgeführt. Zunächst zieht V1 für eine Zeitdauer von 30 Sekunden an, um das trockene Probegas zur Sensorzelle zu leiten, was in Abb. 40 durch den rot-markierten Pfad dargestellt ist.

Bezeichnungen			
DD	Trockenmittel-Einsatz	MG	Feuchte-Generator
MFC	Massen-Durchflussregler	V1, V2, V3	Magnetventile
QCH	Sensorzelle	HE1, HE2	Wärmetauscher
PS	Drucksensor	FC1, FC2, FC3	Volumenstrom-Regler

Abb. 40 Kalibrierzyklus (Phase 1) – Fluss des trockenen Messgases Nach Beendigung dieser 30 Sekunden dauernden Messphase fällt V1 ab und V2 wird erregt. Nun strömt das Referenzgas vom Feuchtegenerator zur Sensorzelle. Dies ist der Beginn der Phase 2 (s. Abb. 41).

Das Kalibrier-Referenzgas wird für weitere 30 Sekunden gemessen; dann fällt V2 ab und der Zyklus beginnt von neuem.

Die inaktiven Gaspfade werden während jeder Phase kontinuierlich gespült; dies sind die grün dargestellten Pfade in den Abb. 38 und 39.

Bezeichnungen			
DD	Trockenmittel-Einsatz	MG	Feuchte-Generator
MFC	Massen-Durchflussregler	V1, V2, V3	Magnetventile
QCH	Sensorzelle	HE1, HE2	Wärmetauscher
PS	Drucksensor	FC1, FC2, FC3	Volumenstrom-Regler

Abb. 41 Kalibrierzyklus (Phase 2) – Messgasfluss

Der Analysator führt nun eine Anzahl von "Setz"-Zyklen aus, um sicherzustellen, dass das interne Probenahmesystem mit dem Kalibriergas völlig im Gleichgewicht steht, bevor die Kalibrierdaten aufgenommen werden.

Nachdem das System die vorgewählte Anzahl von Setz-Zyklen durchgeführt hat, beginnt es mit den Kalibrier-Zyklen. Während diesen Zyklen wird die Frequenzdifferenz zwischen dem Kalibrier-Referenzgas und dem trockenen Gas gemessen. Da der Feuchtegehalt des Kalibriergases bekannt ist, entspricht die Differenz aus diesem Wert und dem gemessenen Feuchtewert dem Messfehler im System.

Der QMA401-Analysator speichert den gemessenen Kalibrierwert und kompensiert automatisch alle nachfolgenden Messwerte für irgendwelche Verschiebung, die mit der Werkskalibrierkurve passiert sind.

4 WARTUNG

Der QMA401-Analysator und sein Messsystem sind so ausgelegt, dass nur eine minimale Wartung erforderlich ist. Sollte dennoch ein Fehler im System auftreten, der nicht in dieser Bedienungsanleitung behandelt wird, so nehmen Sie bitte mit Michell Instruments oder ihrem lokalen Vertreter Kontakt auf (www.michell. com).

Alle Wartungsarbeiten an diesem Gerät sollten von entsprechend geschultem Personal ausgeführt werden. Unbefugte Wartungsarbeiten an diesem Gerät, die nicht in dieser Bedienungsanleitung beschrieben sind, können zum Erlöschen jeglicher Garantieansprüche führen.

Neben den einfachen Instandhaltungsmaßnahmen, wie die Reinigung des Gerätegehäuses und der LCD-Anzeige, kann der Trockenmitteleinsatz vom Bediener ausgebaut und gegen einen neuen ausgetauscht werden.

4.1 Ausbau und Austausch der Netzsicherung

Die Sicherung kann vor Ort von einem anerkannten Service-Techniker von Michell Instruments ausgetauscht werden. Bitte nehmen Sie bei Michell Kontakt mit einem Service-Mitarbeiter für Ersatz- und Austauschteile auf.

4.2 Ausbau und Austausch der Trockner-Modul

1. Öffnen Sie die Rändelschrauben, um die Trockner-Serviceklappe zu entfernen.

2. Nehmen Sie den mitgelieferten Schraubenschlüssel von der Rückwand der Serviceklappe.

3. Schrauben Sie die beiden VCR-Rohrverschraubungen an den Trockner modul mit dem Schraubenschlüssel auf.

- 4. Lösen Sie die VCR-Rohrverschraubungen von Hand.
- 5. Entfernen Sie den Trockner-modul.

6. Der Einbau des neuen Trockner-modul erfolgt gemäß diesen Anweisungen, jedoch in umgekehrter Reihenfolge.

5 KALIBRIERUNG

5.1 Rückführbarkeit

Die Kalibrierung dieses Analysators ist auf NPL (UK) und NIST (US) rückführbar. Ein Neun-Punkte Neun-Punkte-Zertifikat wird mit jedem Analysator geliefert.

Sind solche Einrichtungen nicht vorhanden, muss der Analysator zurück zum Hersteller Michell Instruments oder zu einer seiner zugelassenen Vertretungen gesendet werden. Eine Liste der weltweiten Büros von Michell Instruments finden Sie unter www.michell.com.

Bei der Werkskalibrierung des Analysators stehen die Messkristalle unter einem festen Druck und deshalb sind alle weiteren, internen Kalibrierungen nur dann gültig, wenn Eingangs- und Gegendruck am Ausgang so eingestellt sind, dass sie den Druckwerten bei der Werkskalibrierung entsprechen.

Abb. 42 zeigt ein typisches Kalibrier-Zertifikat.

Abb. 42 Typisches QMA401 Kalibrier-Zertifikat

6 APPLIKATIONSSOFTWARE

Mit der QMA-Applikationssoftware ist folgendes möglich:

- Auslesen und Ändern aller wesentlichen Analyse-Parameter
- Aufzeichnen und Erfassen aller wesentlichen Analyse-Parameter
- Durchführen einer Kalibrierung
- Zurücksetzen des Analysators auf die Werkseinstellung (Default-Werte)

Die Applikationssoftware kommuniziert mit dem Analysator über die RS485-Schnittstelle mit der ModBus-Fernbedienung.

6.1 System-Anforderungen

Damit die Software ihre volle Leistung zeigt, sollte der PC folgende Minimalkonfiguration aufweisen:

Betriebssystem	Windows XP, Windows VISTA, Windows 7 (32-bit oder 64-bit), Windows 8 (32-bit oder 64-bit)
CPU	Intel Pentium III 500 MHz (empfohlen: Pentium 4 1.6 GHz oder Pentium M 1.0 GHz, oder Athlon 1.2 GHz oder schneller)
RAM	512 MB (empfohlen: 1.0 GB)
Speicherplatz	AGröße der Applikation 3 MB

6.2 System-Anschlüsse

Bei Verwendung der RS485-Schnittstelle schließen Sie das Verbindungskabel mit dem RS485/RS232-Konverter an einen freien seriellen Eingang oder einen seriellen/USB-Adapter am Rechner an.

Bei Verwendung der USB-Verbindung schließen Sie den Analysator mit dem USB-Kabel nach Installation der Applikations-Software direkt an den Rechner an.

Bei Verwendung der Modbus TCP -Verbindung schließen Sie den Analysator mit einem Ethernet-Kabel direkt an einen LAN-Anschluss an.

Die standardmäßigen Parameter für eine serielle Schnittstelle sind:

Baud-Rate	9600
Paritäts-Bit	NONE
Daten-Bits	8
Stop-Bits	1

6.3 Einstieg

Nach dem Starten der Software erscheint die Verbindungskonsole, mit der Sie die Kommunikationsverbindung zwischen Software und QMA-Analysator festlegen.

Wählen Sie die Modbus-Slave-Adresse (standardmäßig 1) und den seriellen COM-Port, an den das Gerät angeschlossen ist.

then select either t and port for a TCP c	he COMM p	iss ort	and connect t for a SERI	AL C	onneo	tion	or or	l or IC IP addr	2), 255
Now elick CONNECT									
modBHS Shave Address	utton to		oceed.						
Connection Method	Serial		Comm port	1					
	O TCP		IP address	10	0	50	4	Port	502

Drücken Sie die 'Connect...'-Taste.

Nach wenigen Sekunden meldet die Software in der Regel eine erfolgreiche Verbindung. Ist die Verbindung erfolgreich, erscheint hinter einem grünen Häkchen 'connected'.

hen select either t nd port for a TCP o	ave addres he COMM po onnection.	s and connect rt for a SER	LION IAL c	onneo	od (s	or	l or I IP add	CP), izess
ow click CONNECT								
nodBUS Slave Address								
Connection Method	 Serial 	Comm port	1	-				
	O TCP	IP address	10	0	50	4	Port	502

Drücken Sie die 'Continue'-Taste, um mit dem Hauptfenster der Datenaufnahme fortzufahren.

6.3.1 Anschlussart (Serielle Verbindung RS485 oder USB)

Wählen Sie den COM-Kanal, an dem der Analysator angeschlossen ist.

6.3.1.1 RS485-Verbindung

Ein RS485/RS232-Umsetzer muss für eine Verbindung zu einem im PC eingebauten seriellen Kanal eingesetzt werden, ebenso beim Anschluss an einen RS232/USB-Adapter.

Um die einem USB/RS232-Adapter zugewiesene COM-Kanalnummer zu finden, öffnen Sie in Windows den 'Geräte-Manager' und dort das Unterverzeichnis 'Ports (COM & LPT)'.

Der USB/RS232-Adapter sollte dort zusammen mit der COM-Portnummer gelistet sein.

6.3.1.2 USB-Verbindung

Bei einer direkten USB-Verbindung erscheint der Analysator im 'Geräte-Manager' als virtueller serieller Kanal mit der Bezeichnung 'Michell Instruments USB to UART Bridge Controller', gefolgt von der zugewiesenen COM-Kanalnummer, z.B. COM3.

6.3.1.3 Modbus TCP-Verbindung (Ethernet)

Geben Sie die IP-Adresse und die Portnummer des Analysegerätes ein. Die IP-Adresse und der Port des Geräts sollten zuerst im Ethernet-Menü konfiguriert werden. Siehe Abschnitt 3.7.6 für weitere Informationen.

6.4 Hauptfenster

Ist eine Verbindung erfolgreich eingerichtet, beginnt die Applikationssoftware automatisch mit der Datenerfassung, der Anzeige der Messwerte und der Darstellung einer Messkurve.

Die Messdaten werden ca. alle 2 Sekunden erfasst. Die Messkurve wird alle 2 Sekunden aktualisiert, wobei dies vom Anwender einstellbar ist.

Die Datenspeicherung startet nicht automatisch, was auf der Hauptanzeige durch die Meldung 'NOT LOGGING' gekennzeichnet wird. Durch Betätigen der 'Data Logging'-Taste wird das Fenster zum Einrichten der Datenspeicherung aufgerufen.

Data Logging	X Parameters / Field	calibration	🚿 Connect	About	(?) Help	💥 Quit
ymy W	0.000	Oven ter	mperature (°C) 🐼	59.73	Communications	=
sg/m³	0.00	Cell pressure (PsiG)		0.00	OK Status (view) Mode	OK OK HI WARNINGSI MEASUREMENT
Wyp Pa bs/MMscf	0.000	External	pressure (n/a)	, Se	Settle cycles: Cal. cycles: Gas phase Countdown:	n/a n/o SAMPLE PHASE 8
p (°C/Ideal/Atmos	-136.868				Logging	NOT LOGGING
PLOT SCHOLL-K				2 SECONOS (CLECK OPTEO		

Zur Konfiguration der Analysator-Parameter kommt man über die 'Parameters/Field calibration'-Taste, die das Parameter-Fenster aufruft.

Drücken Sie die 'Connect'-Taste zur Wiederverbindung mit dem Analysator oder der Verbindung mit einem neuen Analysator.

6.5 Einsatz des Messkurven-Diagramms

Tasten für den Kurven-Modus

Das Diagramm ist standardmäßig im Plot-Modus.

Um den Diagramm-Modus zu ändern, drücken Sie eine Taste oberhalb des Diagramms; es stehen die nachfolgend beschriebenen Funktionen zur Auswahl.

Funktion	Beschreibung
PLOT	Gibt das Diagramm im Live-Plot-Modus aus.
SCROLL-X	Erlaubt das Verschieben entlang der X-Achse nach links und rechts.
SCROLL-Y	Erlaubt das Verschieben entlang der Y-Achse nach oben und unten.
SIZE-X	Erlaubt dem Bediener, die X-Achse zu skalieren.
SIZE-Y	Erlaubt dem Bediener, die Y-Achse zu skalieren.
ZOOM BOX	Erlaubt dem Bediener, einen Ausschnitt im Datenbereich auszuwählen, der die Messdaten in diesem Bereich vergrößert darstellt. Dieser Bereich wird von links-oben nach rechts-unten gezeichnet.
OPTIONS	Ruft das Diagramm-Options-Fenster auf.

Nach Gebrauch des Scroll-, Size- oder Zoom-Modus stellt die Änderung des Diagramm-Modus zurück zum Plot-Modus die Änderungen an X- und Y-Achsen wieder zurück.

LOT				UPDATE RATE: 2 SECONDS (CLICK OPTIONS TO CHANGE)	
					- ppm(V) - ppm(W)
50 -					- mg/m³ - Wvp Pa
.:					- Dew point Oven temp
					 Flow rate Cell pressu
⁵⁰ -					CKL pressu
99 -					
19 -1		1		1459-11 60-11500-41 6	1

6.5.1 Diagramm-Optionsfenster

In diesem Fenster können die folgenden Diagramm-Optionen konfiguriert werden:

Funktion	Beschreibung
Show/hide series	Erlaubt das Anzeigen oder Ausblenden von Datenreihen im Diagramm: ankreuzen = zeigen, nicht angekreuzt = verstecken
Restore on plot mode	Falls angekreuzt, stellt der gewählte Plot-Modus die X- und Y-Achse in den Zustand vor den Modifikationen durch Sizing, Zooming oder Scrolling wieder her.
Y-axis scale	Wahl zwischen 'Autoskalierung aller Daten' oder 'manueller Skalierung' der Y-Achse. Bei der manuellen Skalierung wird ein Min-/Max-Eingabe-Textfeld angezeigt.
Update rate	Erlaubt die Änderung der Aktualisierungsrate des Diagramms
Reset chart	Löscht alle Diagramm-Daten

Show ppm(V)	Update every	100000000000000000000000000000000000000	
	opened creek	2 secs	-
Show ppm(W)			
Show mg/m ³	Reset		
Show Wvp PA	Reset cha	rt	
Show Ibs/MMscf			
Show dew/frost point	Restore on pl	iot mode	
Show oven temp.	Restore X	' axis on plot mode	
Show flow rate			
Show cell pressure	Y-scale		
Ext. pressure	Scale to:	utoscale all data	-

6.6 Datenspeicherung

Drücken Sie im Hauptfenster die 'Data Logging'-Taste, um das Fenster zur Einrichtung der Datenspeicherung aufzurufen.

urrent loggi	ng status		
NOT LOGGI	NG		
ogging setup			
Filename:	<none></none>	b	Auto generate
Start:	• Start when 'START	" is clicked	
	OF		
	O Start at this date/	time:	
	20/05/2010 12:0	0:00 AM	
Stop:	• Stop when 'STOP'	s clicked	
	or		
	O Stop at this date/	times	
	20/05/2010 12:0	0:00 AM	
Interval:	5 seconds •		
		STOP	START
		_	
iew log file		He	de C

Wahl des Namens der Protokolldatei

Wählen Sie eine Protokolldatei durch Anklicken der 📮 -Tastetton.

Drücken Sie die 'Auto generate'-Taste, um einen auf dem aktuellen Datum und Zeitpunkt basierenden Dateinamen zu erzeugen.

Ein so erzeugter Protokolldateiname hat folgendes Format:

QMA dd-mm-yy hh:mm:ss.log

dd = Datum, mm = Monat, yy = Jahr, hh = Stunde(24), mm = Minuten, ss = Sekunden

Beispiel:

QMA 15-12-14 13.41.55.log

erzeugt am 15. Dezember 2014 um 13.41.55

Automatisch generierte Protokolldateien werden im 'My Documents'-Verzeichnis gespeichert.

C:\Users\username\Documents\ C:\Documents and Settings\username\Documents\

6.6.1 Konfigurieren der Startzeit der Messdatenspeicherung

Die Messdatenspeicherung kann sofort oder erst zu einem vom Anwender vorgegebenen Zeitpunkt starten. Um sofort zu starten, wählen Sie die Option 'Start when START is clicked'.

Um erst zu einem vom Anwender vorgegebenen Zeitpunkt zu starten, wählen Sie die Option 'Start at this date/time:' und geben Sie Datum & Uhrzeit für den Startzeitpunkt der Messdatenspeicherung ein.

6.6.2 Konfigurieren des Zeitendes der Messdatenspeicherung

Ist die 'Stop when STOP is clicked'-Option gewählt, dann werden die Messwerte solange gespeichert bis die 'STOP'-Taste gedrückt oder das Programm beendet wird.

Ist die 'Stop at this date/time:'-Option gewählt, dann läuft die Messwertspeicherung bis zum Erreichen des gewählten Zeitpunktes, dem Betätigen der 'STOP'-Taste oder dem Beenden des Programms.

6.6.3 Starten der Messdatenspeicherung

Nach Wahl des Dateinamens und Konfiguration der Startzeit und des Zeitendes der Messdatenspeicherung betätigen Sie die 'START'-Taste.

6.6.4 Ansehen der gespeicherten Messwerte

Mit der 'view log file'-Taste kann man eine Log-Datei mit 'Windows Notepad' ansehen.

6.7 Parameter / Vor-Ort-Kalibrierung

Die Analysator-Parameter können in diesem Fenster angesehen und editiert werden.

PARAMETER	Value now	Adjust		PARAMETER	Value now	Adjust		
SYSTEM CONFIGURATION				DATE	6-Oct-14			
Temperature unit	°C	°C	•	Day	6	6		1
Pressure unit	PsiG	PsiG		Month	Oct	Oct		
Dp calc. method	Ideal gas	Ideal gas		Year	14	14		-
Dp calc. pressure source	Atmospheric	Atmospheric		TIME	15:10:17			
Fixed pressure value	3000	3000		Hours	15	15		1
External pressure min.	10	10		Minutes	10	10		-
External pressure max.	3000	3000				Get	PC date / time	
Gas type	Propylene			ALARMS				
User gas 1 flow correction	1.123	1.123		ALARM 1	Oven temp., latched	Latch	Oven temp.	
User gas 1 molecular weight	12.22	12.22		Low setpoint	59	59		
User gas 2 flow correction	2.111	2.111		High setpoint	61	61		
User gas 2 molecular weight	22.22	22.22		ALARM 2	Oven temp., not latched	Latch	Oven temp.	
User gas 3 flow correction	3.111	3.111		Low setpoint	59.9	59.9		
User gas 3 molecular weight	32.22	32.22		High setpoint	60.1	60.1		
ANALOG OUTPUTS				ALARM 3	Flow rate, not latched	Latch	Flow rate	
Output 1 parameter	Cell pressure	Cell pressure	*	Low setpoint	90	90		
Output 1 type	1-5V	1-5V		High setpoint	110	110		
Output 1 zero	0	0		FAULT ALARM	Faults	Faults		
Output 1 span	40	40			Z Latch	Latch		
Dutput 2 parameter	Cell pressure	Cell pressure		FACTORY DEFAULTS				
Output 2 type	4-20mA	4-20mA		Set defaults			Do it	
Output 2 zero	0	0						
Dutput 2 span	3000	3000						

Aktuelle Echtzeit-Werte werden in der Spalte 'Value now' aufgeführt. Neue Werte können in der Spalte 'Adjust' eingegeben werden. Wird ein Wert geändert, so wird er in rot angezeigt und die 'Apply'-Taste ist freigegeben. Drücken Sie die 'Apply'-Taste zur Übernahme der geänderten Werte in den Analysator.

Um Datum & Uhrzeit des PCs in den Analysator zu übernehmen, drücken Sie zuerst die 'Get PC date/time'-Taste, um die Werte in ihre entsprechende Position auf dem Bildschirm zu laden und dann betätigen Sie die 'Apply'-Taste.

Um den Analysator auf Werkseinstellungen zurück zu setzen, drücken Sie die 'Do it...'-Taste rechts unterhalb der Überschrift 'Factory Defaults '.

6.7.1 Vor-Ort-Kalibrierung

Diese Dialogseite bietet die Möglichkeit, eine manuelle Kalibrierung des Analysators durchzuführen und Einstellungen für die automatische Kalibrierung zu konfigurieren.

PARAMETER	Value	now	Adjust	
CALIBRATION GAS				
Gas source	INTER	NAL	INTERNAL	-
Ext. gas value ppm(V)	2.000	0	2.0000	
ANALOG O/P HOLD				
Hold analog o/p's during & after cal.	YES		YES	•
Num. cycles to hold analog o/p's post cal.	5		5	-
CALIBRATION TRIGGER				
Manual or automatic	AUTO	MATIC	AUTOMATIC	•
AUTOMATIC CALIBRATION				
Calibration interval (days)	6		6	-
Hour of day to start calibration (24 hour)	11		11	-
NEXT CALIBRATION COUNTDOWN				
Days	1			
Hours	19			
Minutes	43			
Seconds	41			
	RED	= modifie	d value	
		Start_	Abort	
		Start	Abort.	
Help		Apply	Close	

7 VERSAND

7.1 Vorbereitungen für Verpackung und Versand

Für den Versand sollte das Gerät in seinem Original-Karton verpackt werden, denn dieser bietet den empfohlenen Schutz während des Transports.

Zur Vorbereitung für den Versand sollte das Gerät wie folgt vorbereitet werden:

- 1. Schalten Sie das Gerät aus, trennen Sie es von der Stromversorgung und ziehen Sie das Netzkabel ab.
- 2. Entfernen Sie die Anschlusskabel an den Analog- und Alarm-Ausgängen.
- 3. Sperren Sie die Messgas-Zufuhrleitung ab und entfernen Sie die Anschlüsse am Gaseinlass und Gasauslass.
- 4. Bringen Sie die mitgelieferten VCR-Abdeckkappen wieder an den GAS INund GAS OUT-Anschlüssen an. Hinweis: Dieser Schritt ist wichtig, um eine Verkürzung der Lebensdauer des Trockners zu vermeiden.
- 5. Packen Sie das Gerät in seinen Original-Karton. Sind irgendwelche Zubehörteile zurückzuschicken, so legen Sie diese in die Zubehörschachtel und platzieren diese als letzte im Karton.
- 6. Erstellen Sie eine Packliste mit allen Teilen, die sich im Karton befinden, legen Sie diese in den Karton und verschließen ihn. Zur zusätzlichen Sicherheit sollte der Karton verschnürt werden.

Anhang A

Technische Spezifikationen

Anhang A Technische Spezifikationen

Leistungsspezifikatio	n
Messtechnologie	Schwing-Quarzkristall mit kurzen Ansprechzeiten
Kalibrierter Bereich	0,1700ppm _v
Messbereich	0,12000ppm _v
Genauigkeit	$\pm 10\%$ des Messwertes von 1 bis 2.000 ppm _v $\pm 0,1$ ppm zwischen 0,1 und 1 ppm _v
Wiederholbarkeit	\pm 5% des Messwertes von 1 bis 2.000 ppm _v 0,1 ppm zwischen 0,1 und 1 ppm _v
Nachweisgrenze	0.1 ppm _v
verfügbare Einheiten	ppm _v , ppm _w , mg/m ³ , Dampfdruck (Pa), Frostpunkt (°C), lbs/MMscf
Ansprechgeschwindigkeit	T63 <2 Min für einen Sprung in beide Richtungen T95 <5 Min für einen Sprung in beide Richtungen
Automatische Kalibrierung	interne Feuchtegeneratorquelle, rückführbar kalibriert nach NPL & NIST
Empfindlichkeit	0.1ppm _v oder 1% des Messwertes – immer der jeweils größere Wert
Elektrische Spezifika	tionen
Stromversorgung	85264 V AC, 47/63Hz, 110300 V DC
Max. Leistungsaufnahme	150 VA
Alarme	1 x System-Alarm, potentialfreier Wechselkontakt (FORM C) 3 x Prozess-Alarme, wählbar für verschiedene Parameter, potentialfreie Wechselkontakte (FORM C)
Kommunikations- schnittstellen	Analog-Ausgänge: 2 Kanäle, Anwender-wählbar 4-20 mA oder 15 V Digitale Kommunikation: RS485/USB Modbus RTU, Ethernet Modbus TCP
Datenspeicherung	Messdatenspeicherung auf SD-Karte in Anwender-wählbarem Intervall
Bedienanzeige	7"-Farb-LCD-Bildschirm
Betriebsbedingunger	1
Einlass-Druck	1 barÜ (14.5 psig)
Auslass-Druck	atmosphärisch
Messgas-Durchfluss	300ml/min Gesamtdurchfluss ohne Bypass
Messgas-Temperatur	0+100°C
Betriebsumgebung	+5+45°C bis zu 90% rF
Mechanische Spezifil	kationen
Gehäuse	19"-Einschub, 4U x 434mm
Gasanschlüsse	1/4" VCR(M)
Gewicht	13,5 kg

Anhang B

Berechnung des Umrechnungsfaktors für die Gasgemische

Anhang B Berechnung des Umrechnungsfaktors für die Gasgemische

Die Einstellung der richtigen Flussrate, ist von entscheidender Bedeutung für den Betrieb des QMA401. Wenn das Gas mehrere Komponenten enthält, muss der Umrechnungsfaktor berechnet und als "user" Trägergas eingegeben werden.

Der Umrechnungsfaktor für eine Spezifische Gasgemischung wird wie folgt berechnet:

 $\frac{1}{C_{mix}} = \frac{V_1}{C_1} + \frac{V_2}{C_2} + \frac{V_n}{C_n}$ $C_{mix} = \text{Umrechnungsfaktor für das Gasgemisch}$ $C_n = \text{Umrechnungsfaktor für die Gas 'n}$ $V_n = \text{Umrechnungsfaktor für die Gas 'n' in der Mischung}$

Zum Beispiel, die Gasmischung enthält:

10% N ₂	$C_1 = 1.000$
30% Ar	$C_2 = 1.395$
50% CH ₄	$C_{3} = 0.7419$
10% CO ₂	$C_4 = 0.7186$

 $\frac{1}{C_{mix}} = \frac{0.1}{1} + \frac{0.3}{1.395} + \frac{0.5}{0.7419} + \frac{0.1}{0.7186} \qquad C_{mix} = 0.8865$

Angezeigt werden die Umrechnungsfaktoren für einige gängige Gase. Sollte das zu messende Gas Komponenten enthalten, die nicht auf dieser Liste stehen, kontaktieren Sie bitte Ihren Michell-Vertreter.

1.000	Air (Luft)
1.395	Ar – Argon
0.742	CH_4 – Methane (Methan)
0.594	C_2H_2 – Ethyne (Ethin)
0.568	C_2H_4 – Ethelyne (Ethen)
0.466	C_2H_6 – Ethane (Ethan)
0.377	C ₃ H ₆ – Propylene (Propen)
0.320	$C_{3}H_{8}$ – Propane
0.238	$C_4H10 - Butane (n-Butan)$
0.999	CO – Carbon Monoxide (Kohlenstoffmonoxid)
0.718	CO ₂ – Carbon Dioxide (Kohlenstoffdioxid)
1.019	H ₂ – Hydrogen (Wasserstoff)
1.422	He – Helium
1.446	Kr – Krypton
1.002	N ₂ – Nitrogen (Stickstoff)
1.415	Ne – Neon
0.757	NH ₃ – Ammonia (Ammoniak)
0.971	NO – Nitrogen Oxide (Stickstoffmonoxid)
0.694	N ₂ O – Nitrous Oxide (Distickstoffmonoxid)
0.978	$O_2 - Oxygen$ (Sauerstoff)
1.339	XE – Xenon
Anhang C

Modbus Halte-Register-Liste

Anhang C Modbus Halte-Register-Liste

Alle Datenwerte innerhalb des QMA401 Spurenfeuchte-Analysators werden in Halte-Registern gespeichert. Jedes dieser Register besteht aus zwei Bytes, also insgesamt 16 Bit breit. Einige dieser Register enthalten Geräte-spezifische Werte, wie beispielsweise die eineindeutige Systemadresse, den Wert der IP-Adresse, usw. Andere Register beinhalten die Werte der Echtzeit, den Wert des gemessenen Taupunkts und die Temperatur. Jede Modbus-Meldung hat einen 2-teiligen Adress-Code, einen für das niederwertige (low) Byte (Bits 0...7) und einen für das höherwertige (high) Byte (Bits 8...15). Es gibt auch die Einrichtung von Mehrfach-Registern, die durch ein "high"- und ein "low"-Byte spezifiziert sind, die in einer Abfrage enthalten sind, um mit derselben Meldung adressiert und ausgelesen zu werden.

Die untenstehende Tabelle beschreibt die Geräte-Register mit den zugehörigen Adressen mit den entsprechenden Register-Konfigurationen und Definitionen in der Register-Liste.

Die Register-Liste unterhalb der Tabelle legt die Daten fest, die jedem Bit/Byte für jeden Register-Typ zugeordnet sind.

Adresse/ Nummer	Funktion/Beschreibung	lesen/ schrei- ben	Default- Wert	Register- Konfiguration	Anmerkungen/ Realwert-Bereich
0	ModBus-Konfiguration	R/W		С	
1	System-Konfiguration	R/W		D	
2	Alarm-Konfiguration	R/W		E	
3	Analog-Ausgang-Konfiguration	R/W		F	
4	Interne Messdatenspeicher- Konfiguration	R/W		U	
5	MFC-Bereich in mlm / Gas- Nummer für Flussrate und Mol-Gewicht-Korrektur	R/W		S	
6	PID – Proportional Wert	R/W		A3	0.01-100.00%
7	PID – Integral Wert	R/W		A3	0.01-1000.0%
8	PID – Differential Wert	R/W		A3	0.01-100.00%
9	Analysator Status Alarm Relay, Warn Auswahlmaske	R/W		М	
10	Trockner-Kapazität (ppm) / Feuchte- Gen-Kapazität (Tage)	R/W	255 / 103	V	
11	Signal Filter Settings	R/W		W	
12	Alarm1 – Unterer Grenzwert	R/W		s. Anhang D.1	
13	Alarm1 – Oberer Grenzwert	R/W		s. Anhang D.1	
14	Alarm2 – Unterer Grenzwert	R/W		s. Anhang D.1	
15	Alarm2 – Oberer Grenzwert	R/W		s. Anhang D.1	
16	Alarm3 – Unterer Grenzwert	R/W		s. Anhang D.1	
17	Alarm3 – Oberer Grenzwert	R/W		s. Anhang D.1	
18	Analog-Aus 1 –Unt. Grenzwert	R/W		s. Anhang D.1	
19	Analog-Aus 1 – Ob. Grenzwert	R/W		s. Anhang D.1	
20	Analog-Aus 2 – Unt. Grenzwert	R/W		s. Anhang D.1	
21	Analog-Aus 2 – Ob. Grenzwert	R/W		s. Anhang D.1	
22	Fester Eingangsdruck-Wert	R/W		s. Anhang D.1	
23	Nächste Kalibrierung – Konfiguration	R/W		P1	
24	User untere ppm _v -Grenze	R/W		A3	0,000,10
25	Nächste Kalibrierung – Intervalle zwischen Kal.	R/W		P2	
26	Nächste Kalibrierung – Externer Kal- Wert – Hi_Word	R/W		I	0,012.000,00 ppm _v

27	Nächste Kalibrierung – Externer Kal- Wert – Lo_Word	R/W	I	0,012.000,00 ppm _v
28	letzte Kal. Tag/Monat/Jahr	R	J	
29	letzte Kal. Details (kann Korrektur-Faktor schreiben)	R/W	К	
30	letzte Kal. Datum – 1 Tag/Monat/Jahr	R	J	
31	letzte Kal. Details – 1 Details	R	К	
32	letzte Kal. Datum – 2 Tag/Monat/Jahr	R	J	
33	letzte Kal. Details – 2 Details	R	К	
34	letzte Kal. Datum – 3 Tag/Monat/Jahr	R	J	
35	letzte Kal. Details – 3 Details	R	К	
36	letzte Kal. Datum – 4 Tag/Monat/Jahr	R	J	
37	letzte Kal. Details – 4 Details	R	К	
38	User Gasfluss-KorrektWert 1	R/W	A4	0,10010.000
39	User Gasfluss-KorrektWert 2	R/W	A4	0,10010.000
40	User Gasfluss-KorrektWert 3	R/W	A4	0,10010.000
41	User Gas Mol-Gewicht Wert 1	R/W	A3	0,10500,00
42	User Gas Mol-Gewicht Wert 2	R/W	A3	0,100500,00
43	User Gas Mol-Gewicht Wert 3	R/W	A3	0,100500,00
44	Ext. Druck-Sensor Min-Wert	R/W	s. Anhang D.1	
45	Ext. Druck-Sensor Max-Wert	R/W	s. Anhang D.1	
46	Spulen halte Kraft in %	R/W	A1	
47	*Ofen Temperatur – Cal ADC Val	R/W	A1	04095
48	*Interner Druck – ADC Val 4mA	R/W	A1	14095
49	*Interner Druck – ADC Val 20mA	R/W	A1	14095
50	*Analog Ausgang 1 – DAC 4mA Value	R/W	A1	0-65535
51	*Analog Ausgang 1 – DAC 20mA Value	R/W	A1	0-65535
52	*Analog Ausgang 2 – DAC 4mA Value	R/W	A1	0-65535
53	*Analog Ausgang 2 – DAC 20mA Value	R/W	A1	0-65535
54	*Externer Druck – ADC Val 4mA	R/W	A1	04095
55	*Externer Druck – ADC Val 20mA	R/W	A1	04095
56	*RTC Cal Value – PPM error	R/W	A1	0-121
57	*Geräte-Seriennummer HI WORD	R/W	32 bit Integer HI Word	14294967296
58	*Geräte-Seriennummer LO WORD	R/W	32 bit Integer LO Word	n
60	*Osz Firmware-Vers. Hi Word	R	I	
61	*Osz Firmware-Vers. LO Word	R	I	
62	*Osc Table1 DeltaF 01 Hi Word	R/W	I	0.00012000.0000
63	*Osc Table1 DeltaF 01 Lo Word	R/W	I	n
64	*Osc Table1 DeltaF 02 Hi Word	R/W	I	0.00012000.0000
65	*Osc Table1 DeltaF 02 Lo Word	R/W	I	w
66	*Osc Table1 DeltaF 03 Hi Word	R/W	I	0.00012000.0000
67	*Osc Table1 DeltaF 03 Lo Word	R/W	I	w
68	*Osc Table1 DeltaF 04 Hi Word	R/W	Ι	0.00012000.0000
69	*Osc Table1 DeltaF 04 Lo Word	R/W	Ι	w
70	*Osc Table1 DeltaF 05 Hi Word	R/W	I	0.00012000.0000
71	*Osc Table1 DeltaF 05 Lo Word	R/W	I	w
72	*Osc Table1 DeltaF 06 Hi Word	R/W	Ι	0.00012000.0000
73	*Osc Table1 DeltaF 06 Lo Word	R/W	I	"

74	*Osc Table1 DeltaF 07 Hi Word	R/W	Ι	0.00012000.0000
75	*Osc Table1 DeltaF 07 Lo Word	R/W	Ι	w
76	*Osc Table1 DeltaF 08 Hi Word	R/W	Ι	0.00012000.0000
77	*Osc Table1 DeltaF 08 Lo Word	R/W	I	w
78	*Osc Table1 DeltaF 09 Hi Word	R/W	I	0.00012000.0000
79	*Osc Table1 DeltaF 09 Lo Word	R/W	Ι	w
80	*Osc Table1 DeltaF 10 Hi Word	R/W	I	0.00012000.0000
81	*Osc Table1 DeltaF 10 Lo Word	R/W	Ι	w
82	*Osc Table1 DeltaF 11 Hi Word	R/W	Ι	0.00012000.0000
83	*Osc Table1 DeltaF 11 Lo Word	R/W	Ι	w
84	*Osc Table1 DeltaF 12 Hi Word	R/W	I	0.00012000.0000
85	*Osc Table1 DeltaF 12 Lo Word	R/W	I	w
86	*Osc Table1 Ref 01 Hi Word	R/W	I	0.000110000.0000
87	*Osc Table1 Ref 01 Lo Word	R/W	I	"
88	*Osc Table1 Ref 02 Hi Word	R/W	I	0.000110000.0000
89	*Osc Table1 Ref 02 Lo Word	R/W	Ι	w
90	*Osc Table1 Ref 03 Hi Word	R/W	I	0.000110000.0000
91	*Osc Table1 Ref 03 Lo Word	R/W	 I	u
92	*Osc Table1 Ref 04 Hi Word	R/W	 I	0.000110000.0000
93	*Osc Table1 Ref 04 Lo Word	R/W	 I	u
94	*Osc Table1 Ref 05 Hi Word	R/W	 I	0.000110000.0000
95	*Osc Table1 Ref 05 Lo Word	R/W	 I	w
96	*Osc Table1 Ref 06 Hi Word	R/W	 I	0.000110000.0000
97	*Osc Table1 Ref 06 Lo Word	R/W	 I	u
98	*Osc Table1 Ref 07 Hi Word	R/W	 I	0.000110000.0000
99	*Osc Table1 Ref 07 Lo Word	R/W	 I	u
100	*Osc Table1 Ref 08 Hi Word	R/W	I	0.000110000.0000
101	*Osc Table1 Ref 08 Lo Word	R/W	Ι	w
102	*Osc Table1 Ref 09 Hi Word	R/W	I	0.000110000.0000
103	*Osc Table1 Ref 09 Lo Word	R/W	I	w
104	*Osc Table1 Ref 10 Hi Word	R/W	Ι	0.000110000.0000
105	*Osc Table1 Ref 10 Lo Word	R/W	I	w
106	*Osc Table1 Ref 11 Hi Word	R/W	I	0.000110000.0000
107	*Osc Table1 Ref 11 Lo Word	R/W	I	w
108	*Osc Table1 Ref 12 Hi Word	R/W	I	0.000110000.0000
109	*Osc Table1 Ref 12 Lo Word	R/W	I	w
110	*BLANK3	R/W		
111	*Osc Table1 Cal Flow Rate ml/m	R/W	A2	10-2000 ml/m
112	*Osc Table1 Cal Int Moist Gen Val Hi Word	R/W	I	0.000110000.0000
113	*Osc Table1 Cal Int Moist Gen Val Lo Word	R/W	I	u.
114	*Osc Table1 Cal Oven SP degC/ Cal Date DAY	R/W	Q	4080 / 131
115	*Osc Table1 Cal Date MONTH / YEAR	R/W	Q	112 / 099
116	*Osc Table1 Cal Sample Phase Time	R/W	A1	1065535 seconds
117	*Osc Table1 Cal Reference Phase Time	R/W	A1	1065535 seconds
118	*Osc Table1 Cal Settling Cycles	R/W	A1	4240 cycles
119	*Osc Table1 Cal Calibration Cycles	R/W	A1	460 cycles
120	*BLANK	R/W		

QMA401 Bedienungsanleitung

ANHANG C

121	*Osc Table1 Cal Cell Pressure Reading	R/W	A3	0.0010.00 barG
122	*Osc Table1 Cal Beat Freq of Ref	R/W	A1	100015000 (NICHT VERWENDET)
123	*Osc Table1 Cal Beat Freq of Moist Gen	R/W	A1	100015000 (NICHT VERWENDET)
124	*Osc Table2 DeltaF 01 Hi Word	R/W	I	0.00012000.0000
125	*Osc Table2 DeltaF 01 Lo Word	R/W	I	u u
126	*Osc Table2 DeltaF 02 Hi Word	R/W	I	0.00012000.0000
127	*Osc Table2 DeltaF 02 Lo Word	R/W	I	w
128	*Osc Table2 DeltaF 03 Hi Word	R/W	I	0.00012000.0000
129	*Osc Table2 DeltaF 03 Lo Word	R/W	I	u u
130	*Osc Table2 DeltaF 04 Hi Word	R/W	I	0.00012000.0000
131	*Osc Table2 DeltaF 04 Lo Word	R/W	I	u u
132	*Osc Table2 DeltaF 05 Hi Word	R/W	I	0.00012000.0000
133	*Osc Table2 DeltaF 05 Lo Word	R/W	I	w
134	*Osc Table2 DeltaF 06 Hi Word	R/W	I	0.00012000.0000
135	*Osc Table2 DeltaF 06 Lo Word	R/W	I	n.
136	*Osc Table2 DeltaF 07 Hi Word	R/W	I	0.00012000.0000
137	*Osc Table2 DeltaF 07 Lo Word	R/W	I	w
138	*Osc Table2 DeltaF 08 Hi Word	R/W	I	0.00012000.0000
139	*Osc Table2 DeltaF 08 Lo Word	R/W	I	u u
140	*Osc Table2 DeltaF 09 Hi Word	R/W	I	0.00012000.0000
141	*Osc Table2 DeltaF 09 Lo Word	R/W	I	"
142	*Osc Table2 DeltaF 10 Hi Word	R/W	I	0.00012000.0000
143	*Osc Table2 DeltaF 10 Lo Word	R/W	I	"
144	*Osc Table2 DeltaF 11 Hi Word	R/W	I	0.00012000.0000
145	*Osc Table2 DeltaF 11 Lo Word	R/W	I	"
146	*Osc Table2 DeltaF 12 Hi Word	R/W	I	0.00012000.0000
147	*Osc Table2 DeltaF 12 Lo Word	R/W	I	"
148	*Osc Table2 Ref 01 Hi Word	R/W	I	0.000110000.0000
149	*Osc Table2 Ref 01 Lo Word	R/W	I	"
150	*Osc Table2 Ref 02 Hi Word	R/W	I	0.000110000.0000
151	*Osc Table2 Ref 02 Lo Word	R/W	I	"
152	*Osc Table2 Ref 03 Hi Word	R/W	I	0.000110000.0000
153	*Osc Table2 Ref 03 Lo Word	R/W	I	"
154	*Osc Table2 Ref 04 Hi Word	R/W	I	0.000110000.0000
155	*Osc Table2 Ref 04 Lo Word	R/W	I	"
156	*Osc Table2 Ref 05 Hi Word	R/W	I	0.000110000.0000
157	*Osc Table2 Ref 05 Lo Word	R/W	 I	
158	*Osc Table2 Ref 06 Hi Word	R/W	I	0.000110000.0000
159	*Osc Table2 Ref 06 Lo Word	R/W	 I	"
160	*Osc Table2 Ref 07 Hi Word	R/W	T	0.000110000.0000
160	*Osc Table2 Ref 07 Lo Word	R/W		"
162	*Osc Table2 Ref 08 Hi Word	R/W	T	0.000110000.0000
163	*Osc Table2 Ref 08 Lo Word	R/W	T	"
164	*Osc Table2 Ref 09 Hi Word	R/W	T	0.000110000.0000
165	*Osc Table2 Ref 09 Lo Word	R/W	T	"
166	*Osc Table2 Ref 10 Hi Word	R/W		0.000110000.0000
167	*Osc Table2 Ref 10 Lo Word	R/W/	ī	"
168	*Osc Table2 Ref 11 Hi Word	R/W	ī	0.000110000.0000
169	*Osc Table2 Ref 11 Lo Word	R/W	T	"
			-	

170	*Osc Table2 Ref 12 Hi Word	R/W		I	0.000110000.0000
171	*Osc Table2 Ref 12 Lo Word	R/W		I	n
172	*BLANK	R/W			
173	*Osc Table2 Cal Flow Rate ml/m	R/W		A2	102000 ml/m
174	*Osc Table2 Cal Int Moist Gen Val Hi Word	R/W		I	0.000110000.0000
175	*Osc Table2 Cal Int Moist Gen Val Lo Word	R/W		I	n
176	*Osc Table2 Cal Oven SP degC / Cal Date DD	R/W		Q	4080 / 131
177	*Osc Table2 Cal Date MMYY	R/W		Q	112 / 099
178	*Osc Table2 Cal Sample Phase Time	R/W		A1	10240 seconds
179	*Osc Table2 Cal Reference Phase Time	R/W		A1	10240 seconds
180	*Osc Table2 Cal Settling Cycles	R/W		A1	4240 cycles
181	*Osc Table2 Cal Calibration Cycles	R/W		A1	460 cycles
182	*BLANK	R/W			
183	*Osc Table2 Cal Cell Pressure Reading LoW	R/W	ĺ	A3	0.0010.00 barG
184	*Osc Table2 Cal Beat Freq of Ref	R/W		A2	100015000 (NICHT VERWENDET)
185	*Osc Table2 Cal Beat Freq of Moist Gen	R/W		A2	100015000 (NICHT VERWENDET)
186	*Seriennummer des Backofens HI WORD	R/W		32 bit Integer HI Word	14294967296
187	*Seriennummer des Backofens LO WORD	R/W		32 bit Integer LO Word	n
188	*BLANK	R/W			
189	*BLANK	R/W			
194	Benutzerhandbucheintrag SCF-Wert	W		Α4	Schreiben, um den zu verwendenden SCF-Wert einzustellen (0.25004.000)
195	Passwort für geschützte Register	W		A1	(z.Z. NICHT IN VERWENDUNG)
196	Echtzeituhr stellen – Std./Min.	W		Н	schreiben z. Zeitstellen
197	Echtzeituhr stell.Tag/Mon./Jahr	W		J	schreiben z. Datumstellen
198	Geräte-Befehls-Register	W		Т	
199	*nur zum internen Gebrauch*	Х	Х	Х	bitte nicht verwenden
200	Hauptplatine Firmware-Vers.	R		A3	
201	Feuchte – ppm _v – Hi_Word	R		I	
202	Feuchte – ppm _v – Lo_Word	R		Ι	
203	Feuchte – ppm, – Hi_Word	R		I	
204	Feuchte – ppm,, – Lo_Word	R		I	
205	Feuchte – mg/m3 – Hi_Word	R		Ι	
206	Feuchte – mg/m3 – Lo_Word	R	İ	Ι	
207	Feuchte – Pa – Hi_Word	R		Ι	
208	Feuchte – Pa – Lo_Word	R		Ι	
209	Feuchte – lb/mmscf – Hi_Word	R		I	
210	Feuchte – Ib/mmscf –Lo_Word	R		I	
211	Taupunkt – Hi_Word in eingestellter Einheit	R		I	
212	Taupunkt – Lo_Word in eingestellter Einheit	R		I	
213	Gehäuse-Temperatur in eingestellter Einheit	R		B2	

QMA401 Bedienungsanleitung

214	Externer Druckmesswert in eingestellter Einheit	R	s. Anhang D.1	
215	DeltaF Hi Word	R	I	
216	DeltaF Lo Word	R	Ι	
217	Schwebefrequenz – Hi_Word	R	Ι	
218	Schwebefrequenz – Lo_Word	R	I	
219	Ofen-Temperatur in eingestellter Einheit	R	B3	
220	Flussrate in ml/m	R	A2	
221	Heizleistung in %	R	A2	
222	Echtzeituhr Stunden/Minuten	R	Н	
223	Echtzeituhr Sekunden	R	A1	
224	Echtzeituhr Tag/Monat/Jahr	R	J	
225	Countdown der Schiedsrichter-Sekunden	R	A1	
226	Druckmesswert d. Sensorzelle in eingestellter Einheit	R	s. Anhang D.1	
227	Beispiel Sekunden-Countdown	R	A1	
228	KalEinstellung / Kalibrier- Zyklen Countdown	R	Q	
229	System-Status-Register	R	L	
230	Fehler-Warnungsregister	R	М	
231	akt. Fluss-Korrektur-Wert	R	A4	
232	Feuchte-GenMesswert nach Kalibrierung – Hi_Word	R	I	für Kalibrierzwecke
233	Feuchte-GenMesswert nach Kalibrierung – Lo Word	R	I	für Kalibrierzwecke
234	Countdown zum nächsten Kal. HHDD	R	P2	
235	Countdown zum nächsten Kal. MMSS	R	Q	
236	Durchschnitt 10 Sample DeltaF –Hi_ Word	R	I	Durchschnitt von 10 deltaF-Logs – für Kalibrierzwecke
237	Durchschnitt 10 Sample DeltaF – Lo_ Word	R	I	n
238	Durchschnitt 10 Sample ppm _v –Hi_Word	R	Ι	Durchschnitt von 10 ppm _v -Logs – für Kalibrierzwecke
239	Durchschnitt 10 Sampled ppm _v – Lo_ Word	R	Ι	n
240	Ofen-Echtzeit-Temperatur durchschnittl. ADC-Wert	R	A1	
241	Interner Echtzeit-Druck durchschnittl. ADC-Wert	R	A1	
242	Externer Echtzeit-Druck durchschnittl. ADC-Wert	R	A1	
243	verbr. Trockner-Kapazität / verbr. Feuchte-GenKapazität	R	V	
245	Ethernet-Einstellung – IP-Adresse – höherwertige Bytes	R/W	Q	unbeständig – nicht via Modbus schreibbar – nur über Display
246	Ethernet-Einstellung – IP-Adresse – niederwertige Bytes	R/W	Q	n
247	Ethernet-Einstellung – Subnet- Maske – höherwertige Bytes	R/W	Q	n
248	Ethernet-Einstellung – Subnet- Maske – niederwertige Bytes	R/W	Q	n
249	Ethernet-Einstellung – Def. Gateway – höherwertiges Bytes	R/W	Q	n

250	Ethernet-Einstellung – Def. Gateway – niederwertige Bytes	R/W	Q	w
252	DeltaF Log t0 Hi Word	R	I	für Kalibrierzwecke
253	DeltaF Log t0 Lo Word	R	I	für Kalibrierzwecke
254	DeltaF Log t1 Hi Word	R	I	für Kalibrierzwecke
255	DeltaF Log t1 Lo Word	R	I	für Kalibrierzwecke
256	DeltaF Log t2 Hi Word	R	I	für Kalibrierzwecke
257	DeltaF Log t2 Lo Word	R	I	für Kalibrierzwecke
258	DeltaF Log t3 Hi Word	R	I	für Kalibrierzwecke
259	DeltaF Log t3 Lo Word	R	I	für Kalibrierzwecke
260	DeltaF Log t4 Hi Word	R	I	für Kalibrierzwecke
261	DeltaF Log t4 Lo Word	R	I	für Kalibrierzwecke
262	DeltaF Log t5 Hi Word	R	I	für Kalibrierzwecke
263	DeltaF Log t5 Lo Word	R	I	für Kalibrierzwecke
264	DeltaF Log t6 Hi Word	R	I	für Kalibrierzwecke
265	DeltaF Log t6 Lo Word	R	Ι	für Kalibrierzwecke
266	DeltaF Log t7 Hi Word	R	Ι	für Kalibrierzwecke
267	DeltaF Log t7 Lo Word	R	I	für Kalibrierzwecke
268	DeltaF Log t8 Hi Word	R	Ι	für Kalibrierzwecke
269	DeltaF Log t8 Lo Word	R	I	für Kalibrierzwecke
270	DeltaF Log t9 Hi Word	R	I	für Kalibrierzwecke
271	DeltaF Log t9 Lo Word	R	I	für Kalibrierzwecke
272	ppm _v Log t0 Hi Word	R	I	für Kalibrierzwecke
273	ppm _v Log t0 Lo Word	R	I	für Kalibrierzwecke
274	ppm _v Log t1 Hi Word	R	I	für Kalibrierzwecke
275	ppm _v Log t1 Lo Word	R	I	für Kalibrierzwecke
276	ppm _v Log t2 Hi Word	R	I	für Kalibrierzwecke
277	ppm _v Log t2 Lo Word	R	I	für Kalibrierzwecke
278	ppm _v Log t3 Hi Word	R	Ι	für Kalibrierzwecke
279	ppm _v Log t3 Lo Word	R	I	für Kalibrierzwecke
280	ppm _v Log t4 Hi Word	R	I	für Kalibrierzwecke
281	ppm _v Log t4 Lo Word	R	 I	für Kalibrierzwecke
282	ppm _v Log t5 Hi Word	R	I	für Kalibrierzwecke
283	ppm _v Log t5 Lo Word	R	I	für Kalibrierzwecke
284	ppm _v Log t6 Hi Word	R	 I	für Kalibrierzwecke
285	ppm _v Log t6 Lo Word	R	 I	für Kalibrierzwecke
286	ppm _v Log t7 Hi Word	R	 I	für Kalibrierzwecke
287	ppm _v Log t7 Lo Word	R	 I	für Kalibrierzwecke
288	ppm _v Log t8 Hi Word	R	 I	für Kalibrierzwecke
289	ppm _v Log t8 Lo Word	R	 I	für Kalibrierzwecke
290	ppm _v Log t9 Hi Word	R	 I	für Kalibrierzwecke
291	ppm _v Log t9 Lo Word	R	 I	für Kalibrierzwecke
294	Speicherpuffer – Zeiger auf letzten Speichereintrag	R	A1	zeigt zum Start auf letzten Speichereintrag
295	Speicherpuffer Hauptwert Min – Hi_ Word	R	I	
296	Speicherpuffer Hauptwert Min – Lo_ Word	R	Ι	
297	Speicherpuffer Hauptwert Max – Hi_ Word	R	I	

QMA401 Bedienungsanleitung

298	Speicherpuffer Hauptwert Max – Lo_ Word	R	I	
299	Log1 – Stunden/Minuten	R	Н	
300	Log1 – Tag/Monat/Sekunden	R	J	
301	Log1 – Hauptwert – Hi_Word	R	I	
302	Log1 – Hauptwert – Lo_Word	R	I	
303	Log1 – System-Status-Register	R	L	
304	Log1 – Fehler-Warnungs-Register	R	М	
305	Log2 – Stunden/Minuten	R	Н	
306	Log2 – Tag/Monat/Sekunden	R	J	
307	Log2 – Hauptwert – Hi_Word	R	I	
308	Log2 – Hauptwert – Lo_Word	R	I	
309	Log2 – System-Status- Register	R	L	
310	Log2 – Fehler-Warnungs-Register	R	M	
>>>	>>> zu speichern 288	R	wie oben	

* Werkskalibrierung Daten

Tabelle 11 Modbus Register-Liste

Register - Konfiguration A

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

A1 —	vorzeichenloser	Kurz.	Bereich	=	065	535
------	-----------------	-------	---------	---	-----	-----

A2 — vorzeichenloser Kurz /10. Bereich = 0...6 553,5

A3 — vorzeichenloser Kurz /100. Bereich = 0...655,35

A4 — vorzeichenloser Kurz /1.000. Bereich = 0...65,535

A5 — vorzeichenloser Kurz /10.000. Bereich = 0...6,5535

Umwandlung: Gleichkommazahl * x = vorzeichenlosen Ganzzahl vorzeichenlosen Ganzzahl /x = Gleichkommazahl

oder cast:

zu lesender Gleichkommawert = ((Gleichkomma)(Wert))/x;

zu schreibender vorzeichenloser Kurz- Wert = vorzeichenloser Kurz)(Wert*x)

Register -Konfiguration B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

B1 — vorzeichenbehafteter kurz. Bereich = -32 768...+32 767

B2 — vorzeichenbehafteter kurz /10. Bereich = -3 276,8...+3 276,7

B3 — vorzeichenbehafteter kurz /100. Bereich = -327,68...+327,67

B4 — vorzeichenbehafteter kurz /1.000. Bereich = -32,768...+32,767

B5 — vorzeichenbehafteter kurz /10.000. Bereich = -3,2768...+3.2767

In ein Register manuell zu schreibende Werte:

Ist der Wert eine negative Zahl: (Wert*x)+65 536 Ist der Wert 0 oder eine positive Zahl: Wert*x z B. für Typ B3: (-5,39*100)+65 536 = 64 997(2,01*100) = 201oder cast: (vorzeichenloser kurz)(Wert*x)

Aus einem Register manuell zu lesende Messwerte:

Ist der Wert im Register größer als 32 767: (Wert-65 536)/x Ist der Wert im Register kleiner oder gleich 32 767: Wert/x z.B. für Typ B3: (64 997-65 536)/100 = -5,39 201/100 = 2,01 oder cast: ((Gleichkomma)(vorzeichenbehafteter kurz)Wert))/x

Register-Konfiguration C — Modbus-Konfiguration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						PT	PT	IA							

Register-Konfiguration D — System Konfiguration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DC	DC	СР	СР	CP	СР	PS	PS	PU	PU	PU	TU	TU			NE

Temperatur/Taupunkt-Einheiten (TU)	Druck für Taupunkt-Berechnung (PS)
00 = C (default) 01 = F	00= Atmosphärisch (default) 01 = fester Druck (Anwender-spezifischer Wert) 10 = Ext. Druckmessung (ext. Sensor)
Druck-Einheiten (PU)	Anzahl der zu verwendenden Kalibrierungspunkte (CP)
000 = Bar.G (default) 001 = Bar.A 010 = Psi.G 011 = Psi.A 100 = Mpa.G 101 = mmHg 110 = Mpa.A	Das Minimum ist 3 und das Maximum ist 12. Jeder andere Wert ist ebenfalls 12.
einsetzbare Taupunkt-Methode (DC)	NAMUR Bevorzugte Fehlerstufe
00=IGT 01=ISO 10=Ideal Gas (default)	0 = niedriger Fehler (3.0 mA) 1 = hoher Fehler (22.0 mA)

Hinweis: Wenn eine Druck- oder Temperatur-Einheit geändert wird, dann muss der Bediener für die folgenden Parameter die Werte in die gewählte neue Einheit manuell ändern, soweit dies relevant ist.

- fester Druck für die Taupunkt-Berechnung
- externer Druck-Sensor Min und Max
- Alarm-Grenzwerte
- Analog-Ausgangsbereiche (niedrig und hoch)

Register - Konfiguration E — Alarm-Konfiguration

Hinweis: Alarm 4 ist ein Systemfehler/Warnungsalarm und ist in Reg 9 (Konfiguration M)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
L4	L3	L2	L1	A3	A3	A3	A3	A2	A2	A2	A2	A1	A1	A1	A1

Alarm1 Parameter (A1)	Alarm2 Parameter (A2)
$0000 = \text{Feuchte} - \text{ppm}_{v} \text{ (default)}$	$0000 = \text{Feuchte} - \text{ppm}_{v}$
$0001 = \text{Feuchte} - \text{ppm}_{w}$	$0001 = \text{Feuchte} - \text{ppm}_{w}$
0010 = Feuchte – MGM3	0010 = Feuchte – MGM3
0011 = Feuchte - PA (wvp)	0011 = Feuchte - PA (wvp)
0100 = Feuchte – LBMMSCF	0100 = Feuchte – LBMMSCF
0101 = Taupunkt	0101 = Taupunkt
0110 = Ofen-Temperatur	0110 = Ofen-Temperatur (default)
0111 = Flussrate	0111 = Flussrate
1000 = Sensorzellen-Druck	1000 = Sensorzellen-Druck
1001 = Externer Aufnehmer-Druck	1001 = Externer Aufnehmer-Druck
Alarm3 Parameter (A3)	Alarm Latch Control (L1 to L4)
Alarm3 Parameter (A3) 0000 = Feuchte – ppm _v	Alarm Latch Control (L1 to L4) L1 = 1 = Alarm1 gehalten
Alarm3 Parameter (A3) 0000 = Feuchte – ppm _v 0001 = Feuchte – ppm _w	Alarm Latch Control (L1 to L4) L1 = 1 = Alarm1 gehalten L2 = 1 = Alarm2 gehalten
Alarm3 Parameter (A3) $0000 = Feuchte - ppm_v$ $0001 = Feuchte - ppm_w$ 0010 = Feuchte - MGM3	Alarm Latch Control (L1 to L4) L1 = 1 = Alarm1 gehalten L2 = 1 = Alarm2 gehalten L3 = 1 = Alarm3 gehalten
Alarm3 Parameter (A3) $0000 = Feuchte - ppm_v$ $0001 = Feuchte - ppm_w$ 0010 = Feuchte - MGM3 0011 = Feuchte - PA (wvp)	Alarm Latch Control (L1 to L4) $L1 = 1 =$ Alarm1 gehalten $L2 = 1 =$ Alarm2 gehalten $L3 = 1 =$ Alarm3 gehalten $L4 = 1 =$ Alarm4 gehalten
Alarm3 Parameter (A3) $0000 = Feuchte - ppm_v$ $0001 = Feuchte - ppm_w$ 0010 = Feuchte - MGM3 0011 = Feuchte - PA (wvp) 0100 = Feuchte - LBMMSCF	Alarm Latch Control (L1 to L4) L1 = 1 = Alarm1 gehalten L2 = 1 = Alarm2 gehalten L3 = 1 = Alarm3 gehalten L4 = 1 = Alarm4 gehalten L1 = 0 = Alarm1 nicht-gehalten
Alarm3 Parameter (A3) $0000 = Feuchte - ppm_v$ $0001 = Feuchte - ppm_w$ 0010 = Feuchte - MGM3 0011 = Feuchte - PA (wvp) 0100 = Feuchte - LBMMSCF 0101 = Taupunkt	Alarm Latch Control (L1 to L4) L1 = 1 = Alarm1 gehalten L2 = 1 = Alarm2 gehalten L3 = 1 = Alarm3 gehalten L4 = 1 = Alarm4 gehalten L1 = 0 = Alarm1 nicht-gehalten L2 = 0 = Alarm2 nicht-gehalten
Alarm3 Parameter (A3) $0000 = Feuchte - ppm_v$ $0001 = Feuchte - ppm_w$ 0010 = Feuchte - MGM3 0011 = Feuchte - PA (wvp) 0100 = Feuchte - LBMMSCF 0101 = Taupunkt 0110 = Ofen-Temperatur	Alarm Latch Control (L1 to L4) $L1 = 1 = Alarm1 gehalten$ $L2 = 1 = Alarm2 gehalten$ $L3 = 1 = Alarm3 gehalten$ $L4 = 1 = Alarm4 gehalten$ $L1 = 0 = Alarm1 nicht-gehalten$ $L2 = 0 = Alarm2 nicht-gehalten$ $L3 = 0 = Alarm3 nicht-gehalten$
Alarm3 Parameter (A3) $0000 = Feuchte - ppm_v$ $0001 = Feuchte - ppm_w$ 0010 = Feuchte - MGM3 0011 = Feuchte - PA (wvp) 0100 = Feuchte - LBMMSCF 0101 = Taupunkt 0110 = Ofen-Temperatur 0111 = Flussrate (default)	Alarm Latch Control (L1 to L4) $L1 = 1 = Alarm1$ gehalten $L2 = 1 = Alarm2$ gehalten $L3 = 1 = Alarm3$ gehalten $L4 = 1 = Alarm4$ gehalten $L1 = 0 = Alarm1$ nicht-gehalten $L2 = 0 = Alarm2$ nicht-gehalten $L3 = 0 = Alarm3$ nicht-gehalten $L4 = 0 = Alarm4$ nicht-gehalten
Alarm3 Parameter (A3) $0000 = Feuchte - ppm_v$ $0001 = Feuchte - ppm_w$ 0010 = Feuchte - MGM3 0011 = Feuchte - PA (wvp) 0100 = Feuchte - LBMMSCF 0101 = Taupunkt 0110 = Ofen-Temperatur 0111 = Flussrate (default) 1000 = Sensorzellen-Druck	Alarm Latch Control (L1 to L4) L1 = 1 = Alarm1 gehalten L2 = 1 = Alarm2 gehalten L3 = 1 = Alarm3 gehalten L4 = 1 = Alarm4 gehalten L1 = 0 = Alarm1 nicht-gehalten L2 = 0 = Alarm2 nicht-gehalten L3 = 0 = Alarm3 nicht-gehalten L4 = 0 = Alarm4 nicht-gehalten

Register -Konfiguration F — Analog-Ausgang-Konfiguration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						T2	T1	02	02	02	02	01	01	01	01

Ausgang1- Parameter (01)	Ausgang 2-Parameter (02)
$0000 = \text{Feuchte} - \text{ppm}_{v}$ (default)	$0000 = \text{Feuchte} - \text{ppm}_{v}$
0001= Feuchte – ppm	$0001 = \text{Feuchte} - \text{ppm}_{w}$
0010 = Feuchte - MGM3	0010 = Feuchte - MGM3
0011 = Feuchte - PA	0011 = Feuchte - PA
0100 = Feuchte – LBMMSCF	0100 = Feuchte – LBMMSCF
0101 = Taupunkt	0101 = Taupunkt (default)
0110 = Ofen-Temperatur	0110 = Ofen Temperatur
0111 = Flussrate	0111 = Flussrate
1000 = Sensorzellen-Druck	1000 = Sensorzellen-Druck
1001 = Externer Aufnehmer-Druck	1001 = Externer Aufnehmer-Druck
Ausgangs-Typ – (T1T2)	
0 = 4 - 20 mA	
1 = 1 - 5V	
(wobei T1 Kanal1 und T2 Kanal2 sind)	

Register - Konfiguration H — Zeit (Stunden/Minuten)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HH	HH	HH	HH	HH	HH	HH	HH	MM							

Stunden-Nummer (HH)	Minuten-Nummer (MM)					
0023	0059					

Register -Konfiguration I — 32 bit-Präzisionsfließkomma-Darstellung

IEEE-754 stellt Gleitkomma-Zahlen im einfach-genauen Format dar. Dieses Format ist 'Big Ended', d.h. dass das Hi-Byte unter einer niedrigeren Adresse im Speicher als das Lo-Byte steht, und wird auch so in der Register-Speicherliste dargestellt. Das IEEE-754-Format sieht wie folgt aus:

Bit 31	Bits 30 to 23	Bits 22 to 0
Vorzeichen-bit 0 = + 1 = -	Exponentenfeld hat den festen Offset-Wert +127	Mantisse Dezimal-Darstellung des Binärwertes, wobei $1,0 \leq Wert < 2,0$ ist

Zwei Beispiele für die Gleitkomma-Darstellung HEX-codierter Werte:

1. +10.3

Vorzeichen-Bit = 0 Exponent = 3, der Exponent ist somit = 127 + 3 = 130, und die bits $30...23 = 1000\ 0010$ Die Mantisse = 1,2875 – in Binär-Darstellung = $1010\ 0100\ 1100\ 1100\ 1101$

Bei der Anpassung der Mantisse für den Exponent wandert der Dezimalpunkt nach rechts, falls positiv, und nach links, falls negativ.

Da der Exponent = 3 ist, wird die Mantisse = 1010 0100 1100 1100 1100 1101, denn:

1010 = (1x23) + (0x22) + (1x21) + (0x20) = 10 und $0100 \ 1100 \ 1100 \ 1100 \ 1101 = (0x2-1) + (1x2-2) + -- + (1x2-20) = 0.3$

Daraus folgt der Wert = 0100 0001 0010 0100 1100 1100 1101 = 4124CCCD

und somit für das Hi_Word = 4124 und das Lo_Word = CCCD

2. - 0.000045

Vorzeichen-Bit = 1 Exponent = -18, für das Exponenten-Feld = 127 + (-18) = 109, und Bits $30...23 = 0110 \ 1101$ Mantisse = 1,179648 und in Binär-Darstellung = $1001 \ 0110 \ 1111 \ 1110 \ 1011 \ 0101$

i.e. (1x2-18) + (1x2-21) + (1x2-23) etc. = 0.0000045

Daraus folgt der Wert	=	1011 0110 1001 0110 1111 1110 1011 0101
	=	B696FEB5

Register - Konfiguration J — Datum

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DD	DD	DD	DD	DD	MM	MM	MM	MM	YY						

Datum-Nummer (DD)	Monat-Nummer (MM)
131	112
Jahr-Nummer (YY) oder Sekunden	
00-99 für Jahr oder 00-59 für Sekunden	

Register - Konfiguration K — Historie des Kalibrierungsprotokoll — Details

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MA	IE	UE		CF											

Korrektur-Faktor (CF)	Manuell oder Automatisch (MA)					
14000 /1000,0 = 0,0014,000	0=Manuell					
	1=Automatisch					
Intern oder Extern (IE)	Benutzereintrag (UE)					
0=Intern	Benutzereintrag (UE) 1= CF manuell vom Benutzer geschrieben					

Register - Konfiguration L — System Status Register — 229

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
A4	A4	A3	A3	A2	A2	A1	A1	SS	PS		DH	SM	SM	СР	СР

Zyklus-Phase (CP)	System-Modus (SM)
00 = Referenz-Phase	00 = Standby
01 = Messgas-Phase	01= Messung
10 = Kalibrier-Phase (intern oder extern)	10 = Kalibrierung
Relais-Alarm Statuskennzeichen	Setup-Status (SS)
Beispiel:	0 = Setup-Modus ist AUS
A1 = 00 = OK (Relais abgefallen)	1 = Setup-Modus ist EIN
A1 = 01 = Hoch (oder Fehler)(Relais angezogen)	
A1 = 10 = 1 (Relais angezogen)	
A1 = 11 = Genalten (Relais genalten, aber	
Zustand nun ok)	
Bereinigungsstatus (PS)	Aktueller Datenhaltestatus
0 = Nicht entschlacken	0 = Daten werden derzeit nicht gespeichert
1 = Spülen (System im Setup-Modus und nur	1 = Die Daten werden derzeit gespeichert
REF-Magnetspule ist erregt)	

Register -Konfiguration M — System-Warnungskennzeichen (Register 230), Analysator Status Relay Selektionsmaske (Register 9)

1=Warning or fault, 0=OK

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit	HEX	Warnungsbedingung
0	0001	Oven temperature unstable. Ofen-Temperatur hat sich in einem Zeitraum von 10 Minuten nicht auf $\pm 0,01$ °C vom Sollwert für 5 Minuten Dauerbetrieb (Prozess-Alarme deaktiviert, beide Analog-Ausgänge bei Fehlerbedingung)
1	0002	Enclosure temperature too high. Gehäuse- (System-) Temperatur zu hoch (> Ofen-Temperatur-Sollwert -2°C)
2	0004	Flow control error. MFC Durchflussregel-Fehler (Differenz >5ml/m vom Fluss- Sollwert)
3	0008	Cell pressure sensor error. Sensorzellen-Drucksensor-Fehler (unter 4 mA, über 20 mA oder kein Signal)
4	0010	Ext Press sensor error. Externer Drucksensor-Fehler (unter 4 mA, über 20 mA oder kein Signal)
5	0020	Field cal error. Interner Feuchte-Generator driftet, starke Gerätedrift oder Trockner- Verschlechterung erfordert sehr großen KorrFaktor (<0,2500 oder >4,000). In diesem Fall würde der Korrektur-Faktor auf 1,0 gesetzt.
6	0040	Beat freq. out of range. Schwebe-Fr. unter/über zulässigen Bereich (<1.500 Hz, >20.000 Hz)
7	0080	ppm_v over range. ppm _v über dem Geräte-Bereich (>2.000 ppm _v)
8	0100	Oven temperature sensor fault. Ofen-Temperatur Sensor-Fehler (Prozess-Alarme deaktiviert, Fehler- Alarm aktiv, beide Analog-Ausgänge auf Fehlerbedingung) (ADC <10, >4.000 Zähler)
9	0200	mA output 1 error. mA-Ausgang 1 Fehler ("Open" oder hoher Widerstand am Ausgang)
10	0400	mA output 2 error. mA-Ausgang 2 Fehler ("Open" oder hoher Widerstand am Ausgang)
11	0800	Oscillator board comms error. Oszillator-KommKanal-Fehler oder Platine nicht eingebaut (wird beim Hochfahren des PCs überprüft)
12	1000	Ethernet board comms. error. Ethernet-KommKanal-Fehler oder Platine nicht eingebaut (wird beim Hochfahren des PCs überprüft)
13	2000	Dryer due for service. Adsorptionstrockner fällig für Service oder Austausch (>5.000.000ppm _v)
14	4000	Moisture generator due for service. Interner Feuchte-Generator fällig für Service oder Austausch (>1030 Tage)
15	8000	Kalibrierungsalarm Im Kalibrierungsmodus oder bei gehaltenen Daten (oder beidem)

Die Analysator Status Alarm Selektionsmaske (in Register 9) ermöglicht dem Anwender, die Bedingungen festzulegen, welche den Status Relay Alarm 4 auslösen.

Register -Konfiguration P1 — Nächste Kalibrierung -Konfiguration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MA	IE	DH	MG					AC							

Manuell oder Auto (MA)	Intern oder Extern (IE)
0 = Manuell	0 = Intern
1 = Auto	1 = Extern
Data Hold (DH)	Data Hold-Zusatz-Zyklen (AC)
0 = Aus	0240 Zyklen
1 = Ein	

Register -Konfiguration P2 — Nächste Kalibrierung-Konfiguration — Intervalle zwischen Kalibrierungen

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IH	IH	IH	IH	IH	ID									

Stunden am Tag (IH)	Intervall-Tage (ID)
023	1 Tag365 Tage

Register -Konfiguration Q — Verschiedene Parameter, High Byte und Low Byte

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	GN	GN	GN	GN	GN

MFC-Messbereich in ml/m (MS)	Gas-Nummer (GN)
02 000 ml/m	023 Gase (s. Anhang D.2 für Details).

Register -Konfiguration T — Geräte-Konfiguration und Befehlsregister (Register 198)

Das Schreiben entsprechender Nummern in dieses Register löst das damit verbundene Einstellen, Kalibrieren oder eine Test-Funktion aus.

* bedeutet nur für den Gebrauch durch den Hersteller Michell

** Setzt zuerst in den Einricht-Modus und nach einem Test zurück in den Messmodus

- 2 = Einstellen Sensorzellen-Druck auf 4 mA ADC Wert*
- 3 = Einstellen Sensorzellen-Druck auf 20 mA ADC Wert*
- 4 = Einstellen Externen Druck auf 4 mA ADC Wert*
- 5 = Einstellen Externen Druck auf 20 mA ADC Wert*
- 6 = Sendet Testzeichenfolge auf den Sensor-Kommunikationskanal*
- 7 = Sendet Testzeichenfolge auf den Anzeige-Kommunikationskanal*
- 10 = Erzwingt die Ausgabe von 4 mA an Analog-Ausgang 1**
- 11 = Erzwingt die Ausgabe von 20 mA an Analog-Ausgang 1**

- 12 = Erzwingt die Ausgabe von 4 mA an Analog-Ausgang 2**
- 13 = Erzwingt die Ausgabe von 20 mA an Analog-Ausgang 2**
- 14 = Erzwingt die Ausgabe von 12 mA an Analog-Ausgang 1**
- 15 = Erzwingt die Ausgabe von 12 mA an Analog-Ausgang 2**
- 19 = Alle Alarmrelais sind abgeschaltet
- 20 = Einstellen Alarm Relais 1**
- 21 = Einstellen Alarm Relais 2**
- 22 = Einstellen Alarm Relais 3**
- 23 = Einstellen Alarm Relais 4**
- 25 = Einstellen REF-Magnetventil* (verwendet 100% Leistung am Magnetventil)**
- 26 = Einstellen SAMPLE-Magnetventil * (verwendet 100% Leistung am Magnetventil)**
- 27 = Einstellen CAL-Magnetventil * (verwendet 100% Leistung am Magnetventil)**
- 28 = Alle Magnetventile Aus* (verwendet 100% Leistung am Magnetventil)**
- 30 = Einstellen RTC-Kalibrierungs-ppm- Fehler-Wert*
- 35 = Einstellen Standards Oszillator-Platine*
- 36 = Einstellen Standards Haupt-Platine* (gibt nicht die Kalibrierwerte der Hauptplatine vor)
- 50 = Einstellen System-Modus auf Standby (alle Magnetventile Aus und kein Phasen-Countdown)*

51 = Einstellen System-Modus auf Messung, falls im Kalibrier-Modus (d.h. Abbruch Kalibrieren) ODER Einstellen auf Manuelle Kalibrierung, falls im Auto-Kalibrier-Countdown-Modus.

52 = Einstellen System-Modus auf Kalibrierung, falls Manuelle Kalibrier-Option eingestellt ODER Start Auto-Kalibrier-Countdown-Modus, falls Auto-Kalibrier-Option eingestellt. (Nur falls Ofen-Temperatur stabil geworden ist).

- 60 = Start der Speicherung auf SD-Karte (Öffnen der Protokolldatei)*
- 61 = Stopp der Speicherung auf SD-Karte (Schließen der Protokolldatei)*

65 = Eintreten in Board-Einricht-Modus* (Normale Messzyklen und Ausgangs-/Alarm-Updates sind angehalten)

66 = Verlassen des Board-Einricht-Modus *(Normale Messzyklen und Ausgangs-/Alarm-Updates werden wieder gestartet)

- 67 = Zurücksetzen des RAM-Speicherpuffers und der Status-Einträge auf Null.
- 68 = Einstellen Ethernet-Parameter (Werte in Register 245...250) (Befehl über Modbus nicht erlaubt)
- 70 = Zurücksetzen von Trockner-Service-Kennzeichen und ppm-Summe-Register auf 0,0 ppm
- 71 = Feuchte-Generator-Reset von Service-Kennzeichen und Verbrauchsstundenzähler auf 0 Std.
- 74 = Löschen Alarm 1-Verriegelung
- 75 = Löschen Alarm 2-Verriegelung
- 76 = Löschen Alarm 3-Verriegelung
- 77 = Löschen Alarm 4 (Fehler)-Verriegelung
- 78 = Start Purge (Magnetspule erregt, alle anderen stromlos. System im Setup-Modus)
- 79 = Stop Purge (Das System kehrt in den normalen Messmodus zurück)

Register - Konfiguration U — — Interne Protokoll-Konfiguration / Service-Intervall-Tage

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								RL	RL	RL	RL	DP	DP	DP	DP

DeltaF und ppm _v Speicher-Intervall in Zyklen (DP)	RAM-Puffer Speicher-Parameter (RL)
Bereich ist 115 Zyklen (für Kalibrierzwecke, default= 1)	$\begin{array}{l} 0000 = {\sf Feuchte} - {\sf ppm}_{\sf v} \mbox{ (default)} \\ 0001 = {\sf Feuchte} - {\sf ppm}_{\sf w} \\ 0010 = {\sf Feuchte} - {\sf MGM3} \\ 0011 = {\sf Feuchte} - {\sf PA} \mbox{ (wvp)} \\ 0100 = {\sf Feuchte} - {\sf LBMMSCF} \mbox{ 0101} = {\sf Taupunkt} \\ 1111 = {\sf kein Speichern} \end{array}$

Register - Konfiguration V — Interne Speicherungskonfiguration / Service-Intervall-Tage

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DC	DC	DC	DC	DC	DC	DC	DC	ML							

aufgebrauchte Trockner-Kapazität (DC) –	Feuchte-Generator-Kapazität oder				
in ppm	aufgebraucht (ML) – in Tagen				
0255 x 100 000 stellt dar: 025 500 000 in 100 000 Schritten	0255 x 10 stellt dar: 02 550 Tage (61 200 Stunden) in 10 Tagesschritten				

Register - Konfiguration W — Signal-Filter-Einstellungen

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									BF	BF	DF	DF	DF	DF	DF

SchwebeF-Median-Filter (BF)-Einstellung	DeltaF-Median-Filter (DF) Sample- Umfang
5 Sample Median-Filter zum Entfernen von Spitzen	4-24 = Sample-Umfang für Filter zur Signal- Glättung (default=12)
1=Median von 1 (Mittelwert) 3=Median von 3, gemittelt (default)	< 4 oder >24 = AUS
Alle anderen Werte = AUS	

C.1 Sollwerte und Bereiche

Sollwerte und Bereiche für Analog-Ausgänge, Alarme, Fester Anwender-Druck, Sensorzellen-Druck und externen Drucksensor.

Einheit	Stellbereich / Auflösung	Default-Werte	Registerbereich	Registertyp		
ppm _v	0,03.000,0	0,02.000,0	0-30.000	A2 (vorzeichenlos kurz/10)		
ppm _w	040.000	040.000	040.000	A1 (vorzeichenlos kurz)		
mgm ³	020.000	020.000	020.000	A1 (vorzeichenlos kurz)		
Ра	0,03.000,0	0,03.000,0	030.000	A2 (vorzeichenlos kurz/10)		
dew point degC	-120,0+20,0	-100,00,0	-1.200200	B2 (vorzeichen- behaftet kurz/10)		
dew point degF	-184,0+68	-148,032,0	-1.840680	B2 (vorzeichen- behaftet kurz/10)		
lbmmscf	060.000	060.000	060.000	A1 (vorzeichenlos kurz)		
Oven T degC	-50,0+100,0	59,960,1	-5001.000	B2 (vorzeichen- behaftet kurz/10)		
Oven T degF	-58,0+212,0	139,8140,2	-580+2.120	B2 (vorzeichen- behaftet kurz/10)		
Flow, ml/m	0,0300,0	90,0110,0	03.000	A2(vorzeichenlos kurz/10)		
Pressure, Psi.G	0,03000,0	0,03.000,0	030.000	A2 (vorzeichenlos kurz/10)		
Pressure, Psi.A	14,73.014,7	15,03.015,0	14730.147	A2 (vorzeichenlos kurz/10)		
Pressure, Bar.G	0,00204,08	0,00204,00	020.408	A3 (vorzeichenlos kurz/100)		
Pressure, Bar.A	1,00205,08	1,00205,00	120.508	A3 (vorzeichenlos kurz/100)		
Pressure, Mpa.G	0,0120,78	0,0121,00	12.078	A3 (vorzeichenlos kurz/100)		
Pressure, mmHg	75065.535 (begrenzt)	75065.000	065.535 (begrenzt)	A1 (vorzeichenlos kurz)		
Pressure, MPa.A	0.0120.78	0.0121.00	12078	A3 (vorzeichenlos kurz/100)		
Pressure MPa.A	0.0120.78	0.0121.00	12078	A3 (vorzeichenlos kurz/100)		

C.2 Gase für die Gas-Korrekturwerte

Gase für die Gas-Korrekturwerte von von 0 bis 23 indiziert. Wird ein kundenspezifisches Gas ausgewählt, dann verwendet das Gerät die Gas-Korrekturwerte, die in den entsprechenden Registern 38, 39 stehen, Register 40 für die Durchfluss-Korrektur und in den Registern 41, 42 und 43 für die Molekulargewichte.

- 0 = Air Luft-Mischung1 = Ar - Argon
- $2 = CH_4 Methan$
- $3 = C_2H_2 Azetylen/Äthin$
- $4 = C_2H_4$ Äthylen/Ethen
- $5 = C_2 H_6 Ethan$
- $6 = C_3 H_6 Propylen$
- $7 = C_3H_8 Propan$
- $8 = C_4 H_{10} Butan$
- 9 = CO Kohlenmonoxid
- $10 = CO_2 Kohlendioxide$
- $11 = H_2 Wasserstoff$

- 12 = He Helium
- 13 = Kr Krypton
- $14 = N_2 \text{Stickstoff}$
 - 15 = Ne Neon
 - $16 = NH_3 Ammoniak$
 - 17 = NO Stickstoffmonoxid/Stickoxid
 - $18 = N_2O Distickstoffmonoxid/Lachgas$
 - $19 = O_2 \text{Sauerstoff}$
 - 20 = XE Xenon
 - 21 = Kundenspezif. Gas1
 - 22 = Kundenspezif. Gas2
 - 23 = Kundenspezif. Gas3

Anhang D

Qualität, Recycling und Gewährleistung

Anhang D Qualität, Recycling und Gewährleistung

Michell Instruments hat sich zur Einhaltung aller relevanten Gesetze und Richtlinien verpflichtet. Nähere Informationen finden Sie auf unserer Website unter:

www.michell.com/compliance

Diese Seite enthält Informationen zu den folgenden Richtlinien:

- Strategie zur Bekämpfung von Steuerhinterziehung
- ATEX Richtlinie
- Kalibriereinrichtungen
- Konfliktmineralien
- FCC (EMC Anforderungen für Nordamerika)
- Fertigungsqualität
- Stellungnahme zu moderner Sklaverei
- Druckgeräterichtlinie
- REACH Verordnung
- RoHS3 Richtlinie
- WEEE2 Richtlinie
- Recycling Politik
- Gewährleistung und Rücksendungen

Diese Information ist auch im PDF Format erhältlich.

Anhang E

Rücksendungsdokumente und Erklärung über Dekontamination

Anhang E Rücksendungsdokumente und Erklärung über Dekontamination

Decontamination	Certificate
Decontanniation	Culture

Wichtiger Hinweis: Bitte füllen Sie dieses Dokument aus und fügen es dem Instrument oder Ersatzteil bei, dass Sie an uns zurücksenden. Das Dokument muss ebenfalls ausgefüllt werden, bevor ein Michell Servicemitarbeiter an dem Gerät vor Ort arbeitet. Geräte mit einer unvollständig ausgefüllten Dekontaminationserklärung werden nicht überprüft.

Instrument			Serial Numbe	r	
Warranty Repair?	YES	NO	Original PO #	<u>+</u>	
Company Name			Contact Nam	e	
Address				I	
Telephone #			E-mail addres	s	
Reason for Return /E	Description of Fault:				
Has this equipment I Please circle (YES/N	been exposed (inter O) as applicable and	nally or externally) d provide details be) to any of the f elow	ollowing?	
Biohazards			YE	S	NO
Biological agents			YE	S	NO
Hazardous chemicals	5		YE	S	NO
Radioactive substanc	ces		YE	S	NO
Other hazards			YE	S	NO
Your method of clean	ning/decontaminati	on			
Has the equipment t	peen cleaned and d	econtaminated?	YE	S	NOT NECESSARY
Michell Instruments materials. For most gas (dew point <-30 Work will not be c Decontamination	will not accept ins applications involv °C) over 24 hours carried out on any	truments that have ing solvents, acidic should be sufficient o unit that does n	e been exposed c, basic, flamma t to decontamin tot have a con	I to toxins, rad ble or toxic ga ate the unit pri npleted deco	dio-activity or bio-hazardou ases a simple purge with dr ior to return. ntamination declaration
I declare that the in	Deciaration				
	formation above is or repair the return	true and complet ed instrument.	e to the best o	f my knowledg	ge, and it is safe for Miche
Name (Print)	formation above is or repair the return	true and complet ed instrument.	e to the best o	f my knowledg	ge, and it is safe for Miche
Name (Print) Signature	formation above is or repair the return	true and complet ed instrument.	e to the best of Position Date	f my knowledg	ge, and it is safe for Miche
Name (Print) Signature	formation above is or repair the return	true and complet ed instrument.	e to the best o Position Date	f my knowledg	ge, and it is safe for Miche

NOTIZEN:

www.ProcessSensing.com

http://www.michell.com