REDCUR

Powerlens Manual

Measure Voltage, Current, Charge and Energy based on SIGNALTEC/LEM High Precision Current Transducers and High Precision Voltage Acquisition Technology with **EtherCAT** and **CAN Bus** Interfaces.

Table of Contents

General Information	3
Installation Warning	3
Variants to fit SIGNALTEC/LEM transducers	3
Highlights	3
Standards/Compliance	4
Specification	4
Mechanical/Electrical/Environment	4
EtherCAT	4
CAN Bus	5
Current Measurement	5
Voltage Measurement	5
Hardware Installation	7
Meaning of LEDs	8
Measurement Concepts	9
Principal Measurement Inputs	9
Creation of Average Measurements for EtherCAT and CAN Bus	9
Creation of Oversampling Values for EtherCAT	10
Creation of Time Integrated Measurements for EtherCAT and CAN Bus	10
Bringing into Service on EtherCAT	10
Sensor process data mapping	12
Mode Process Data Mapping	13
CoE Parameters	13
Bringing into Service on CAN Bus	16

General Information

This document is exclusively meant for experts in automation engineering. Please use this document for installation and taking the device into service.

EtherCAT® is a registered trade mark and patented technology licensed by Beckhoff Automation GmbH, Germany.

Redcur GmbH is a member of the EtherCAT Technology Group (ETG) (vendor id Vendor ID 0x00000B19). The conformance of the ECC with the EtherCAT protocol was verified with the EtherCAT Conformance Test Tool (CTT) of Beckhoff.

Installation Warning

To prevent possible electrical shock, fire, or personal injury, do not apply more than the rated voltage, between the terminals or between each terminal and earth ground!

The Product should only be used to measure sources up to 1.200V DC that are protected from short circuit with current limiting to 200mA or less and comply to Overvoltage Category II.

Variants to fit SIGNALTEC/LEM transducers

Redcurs Powerlens is a DC measurement system, dedicated for <u>SIGNALTEC</u> CT series current transducers. The CT series is the ultra high precision derivative of <u>LEM</u>'s renown current sensing technology.

Variants of Powerlens exist to cope the different specifications of SIGNALTEC transducers. Please check if your Powerlens fits the transducer you are using. Improper combination of transducer and Powerlens may seriously damage both components. The following table shows the dependencies:

Variant	Suitable Transducer
PL-CT100	CT100
PL-CT200	CT200
PL-CT400	CT400
PL-CT500	CT500
PL-CT1000	CT1000
PL-CT2000	CT2000

In the PL-xxxx notation the "xxx" stands for the current transducer type.

Highlights

- 24-Bit ADCs with Clock-Sync Sampling of I and U and P
- Counters for Electric Charge (ΔQ, Q+, Q-) and Energy (ΔW, W+, W-)
- I_{max} +/-2.000 A (with CT-2000)
- U_{max} +/-1.200 V Single Range

Revision 1.6

- Included Power Supply for Current Transducer
- EtherCAT Interface
- CAN Bus interface
- 5kV Isolation Rating
- Calibration Service (optional)
- Supports SIGNALTEC/LEM high precision CT series
- Transducer Overload Protection
- Power Supply 9-36V DC

Standards/Compliance

- EtherCAT®
- CAN Bus ISO 11898
- EMC Emission and Immunity: EN 61326-1:2013
- Health and Safety: EN 61010-1:2010 / EN 61010-2-030:2010
- RoHS: EN IEC 63000:2018

Specification

Mechanical/Electrical/Environment

Power Supply	9-36V DC - 4A
Power Consumption	5W + Current Sensor see <u>www.signaltec.de</u> (max. 50W)
Mounting	DIN Rail
Weight	0.35kg
Dimensions (HxWxD) in mm	100x90x110
Maintenance Interface	Mini USB 2.0 (Type B) - no specific SW required
Altitude	maximum 2.000m, operational
Temperature operation/storage	+5°C to +40°C / +5°C to +60°C
Relative Humidity	0% to 70%; non-condensing
Pollution Degree	2

EtherCAT

EtherCAT Cycle Time	50µs -100ms
Measurement Content	 Current Avg plus max. 8 oversampling values Voltage Avg plus max. 8 oversampling values Power Avg Electrical Charge Counter (Q+, Q-, ΔQ) Electrical Energy Counter (W+, W+, ΔW)
Counter Management	MeterStop (1: Stop Count, 0: Counting) MeterReset (0 -> 1 Reset Counters)
Decoding	ESI File
Configuration	CoE
Interface	2xRJ45

Isolation Voltage	1.5kVrms
System Indicators	Operational Status of Current Sensor Overrun Detection of ADCs

CAN Bus

CAN Bus Speed	Configurable up to 1Mbps	
Measurement Cycle	Configurable range from 1ms to 2s	
Measurement Content	 0x530: Current Avg, Voltage Avg, Sensor Status 0x540: Power Avg 0x570: ΔQ, ΔQ 0x580: Q+, Q- 0x590: W+, W+ 0x5A0: Runmode (0: Normal Operation, 1: Shows dummy values for Uavg (100V) and Iavg (60A); counters run with dummy values! 	
Counter Management	 0x550: MeterStop (1: Stop Count, 0: Counting) 0x560: MeterReset (0 -> 1 Reset Counters) 	
Decoding	DBC File	
Interface	D-SUB9 Male (Pin 2: CAN_L, Pin 3: CAN_GND, Pin 7: CAN_H) according to CiA DS-102	
Isolation Voltage	5kVrms	
System Indicators	Operational Status of Current Sensor	
Configuration	USB interface	

Current Measurement

A/D Conversion	24 Bit signed $\Delta\Sigma$ (Delta-Sigma) ADC
Current Sensor Connection	Proprietary 9-pin D-Sub
Accuracy	0.005% of Measuring Range
Filtering	Lowpass ~0.5 x ADC Data Rate (Anti Aliasing)
Current Sensors	Please visit www.signaltec.de for specifications

Voltage Measurement

Measurement Voltage Range	-1.200VDC to +1.200VDC	
Overvoltage Category	II	
Input Impedance	$> 10 M\Omega \parallel 5 pF$ (Frequency Compensated)	
Phase Shift	< 0.2° @ 1200Hz	
A/D Conversion	24 Bit signed $\Delta\Sigma$ (Delta-Sigma) ADC	

Connectors	Ø 4mm Sockets - Touch-Protected (IEC/EN 61010-1)
Isolation Rating Voltage	5kVrms
Accuracy	0.005% of Measuring Range
Filtering	Lowpass ~0.5 x ADC Data Rate (Anti Aliasing)

Hardware Installation

RJ45 connectors (IN/OUT)

IN Connect to the EtherCAT master or previous EtherCAT slave OUT Connect to the next EtherCAT slave

Through these connectors only EtherCAT traffic can be handled! To connect use a standard Ethernet cable.

USB Mini Type B

For maintenance only - not a end user interface

9-pin DSUB female connector

- · Power Supply to the current transducer
- Overload Indication/Protection
- Secondary Current Sink Circuitry

To connect use the proprietary D-SUB9 cable delivered with the transducer.

The following restrictions apply to the cable length:

Length	Wire Cross Section (minimum)
≤ 5 m	0,34 mm ²
> 5m ≤ 10m	0,75 mm ²
> 10m	Not supported!

CAN Bus Interface

The CAN Bus of the Powerlens is exposed through a D-SUB9 male connector. The pinout is according to CiA DS-102:

Pin 2: CAN_L Pin 3: CAN_GND Pin 7: CAN_H

The solid green CAN LED indicates that a CAN interface is connected and synchronised.

A DBC file is available for integration. As a default Powerlens uses the CAN mess ID 0x530 (8 bytes long) as described below:

- Current Average (signed 24 Bit, little endian)
- Voltage Average (signed 24 Bit, little endian)
- Sensor Status (1 Bit): 0 "Not Connected", 1 "Connected"
- Reserverad (15 Bit) Reserved

Power Supply 9-36V DC

To be installed by authorised and educated personnel only! Please use the 5-pin connector (Type Phoenix MC 1,5/ 5-ST-3,5) which is part of the delivery!

Pin 2: GND Pin 4: +9..36V Pin 1,3,5: NC

After powering on the mains power supply the system is active. For analysis of the Powerlens state please refer to the section "Meaning of LEDs" below.

CAN

REDCUR

Voltage Input

 $1.000V \approx max.$

Ether**CAT**

GND +9..36V

Voltage Input

The voltage measurement input is available as \emptyset 4mm Sockets rated for 1000Vrms. Please use only suitable cables and connectors (e.g. Stäubli XL-410). The voltage measurement system is able to handle up to 1500V peak voltages and is isolated to the rest of the Powerlens system for up to 5kVrms. It can withstand up to 12.8kV surges.

DIN-Rail Installation

The Powerless is DIN-rail mountable. Use the rear side to easily snap-on the device.

CAUTION: To allow free convection from top and bottom of the chassis.

SIGNALTEC/LEM Transducer

Please refer to the documentation of SIGNALTEC on <u>www.signaltec.de</u> for the proper installation process.

Warning

Primary current in an unpowered current transducer can lead to destruction of the transducer!

The current transducer is to be connected with Powerlens by the delivered proprietary D-SUB9 cable.

Meaning of LEDs

The Powerlens front has six LEDs with the following meaning:

LED	Color	Status	Meaning
+15V green	off	The +15V operating voltage for current sensor is not generated. System not usable.	
		on	+15V for current sensor available. Also to be considered as a general "POWER ON" indication.

LED	Color	Status	Meaning
-15V green	off	The -15V operating voltage for Current Sensor is not generated. System not usable. Also to be considered as a general "POWER ON" indication.	
		on	-15V for current sensor available.
Sensor green	blinking	Sensor not connected or Operational Error of the Current Sensor	
		solid	Sensor connected
CAN green	off	Indicates one of the following - No CAN Bus connected - Not synchronized - CAN Bus congestion	
		solid	CAN Bus connected and synchronised
RUN	green	off	INIT*
		blinking	PREOP*
		single flash	SAFEOP*
		solid	OP*
ERR red	off	No Error	
		blinking	Configuration Error
		single flash	Runtime Error
		double flash	Watchdog Error

*)State of EtherCAT State Machine

Measurement Concepts

Principal Measurement Inputs

- 1. **Current Measurement** the secondary current of the Current Transducer is turned into voltage through a high precision shunt resistor. That voltage is digitized by a 24-Bit $\Delta\Sigma$ (Delta-Sigma) ADC. The ADC allows on-chip calibration of offset and gain.
- 2. **Voltage Measurement** a frequency compensated voltage divider transfers the input voltage to the appropriate ADC voltage level. The same type of ADC is used as for the Current Measurement. The two ADCs are run from the same clock produce their samples fully synchronized.
- 3. **Clock** for the integration of Current over time and Current x Voltage over time a precise clock is required. The on-board oscillator is used that where the deviation is measured during in-house calibration and used in the firmware.

Creation of Average Measurements for EtherCAT and CAN Bus

Applies to: lavg, Uavg, Pavg

The average values reported via EtherCAT and CAN Bus are created upon every EtherCAT/CAN cycle. That means, the ADC samples between EtherCAT/CAN cycles stored and as soon the reporting of the measurement becomes due, the average value is computed.

Note: The Powerlens allows the simultaneous reporting of results via EtherCAT and CAN Bus based on different cycles. But, Powerlens has only one set of ADC samples that will be reset after building averages. In case of simultaneous usage of EtherCAT and CAN the averaged values consist of an unpredictable number of ADC samples. Therefore, the usage of only one interface at a time is recommended.

Creation of Oversampling Values for EtherCAT

Applies to: I(ma)[x], U(mV)[x]

The EtherCAT oversampling values are not averaged but direct ADC values. The algorithm to fill the oversample values is adaptive and ensures that they are timely equidistant.

Creation of Time Integrated Measurements for EtherCAT and CAN Bus

Applies to: Q_plus, Q_minus, Q, W_plus, W_minus, W

The time integrated values (counters) are updated upon each ADC value independent from any external interface. Upon cycle time from EtherCAT or CAN the current values of the counters are reported.

Bringing into Service on EtherCAT

The Powerlens device implements an EtherCAT slave device and has no proprietary front end software. For integration into an EtherCAT system a EtherCAT Slave Information (ESI) file is provided by Redcur. The following screenshots are taken from a TwinCAT 3.1 Master system.

After powering up the system and the proper detection in the EtherCAT master SW the device's data mapping should show up as depicted below.

TwinCAT Project26 - Microsoft Visual Studio (Administrator)
FILE EDIT VIEW PROJECT BUILD DEBUG TWINCAT
80-01 間・行・11 日 41 本 日 合 1 ワ・ウ・
🗧 Bulia 4022.29 (Loaded) 💽 🛫 🔛 🔛 🔛 🦉 🔨 🔍 🔍 🔍
Solution Explorer 👻 🕂 🗙
○ ○ ☆ ĭo - 司 ≯ -
Search Solution Explorer (Ctrl+ü)
R Powerlens
🔺 🔜 Sensor process data mapping
🔁 lAvg
🔁 UAvg
🔁 I(mA)[0]
✤ I(mA)[1]
✓ I(mA)[2]
✓ I(mA)[3]
✓ I(mA)[4]
™ ((MA)[5]
→ I(mA)[0]
₩ U(mV)[0]
✓ U(mV)[1]
✓ U(mV)[2]
🔁 U(mV)[3]
🔁 U(mV)[4]
🔁 U(mV)[5]
🔁 U(mV)[6]
₩ U(mV)[7]
nSamplesValid
Z Ovrn
SampleCnt
PAva
🔁 Q_Plus
🔁 Q_Minus
🔁 W
🔁 W_Plus
🔁 W_Minus
MeterStop
✓ MeterReset
<u>™</u> _N3V2

Sensor process data mapping

Data Field	Data Type	Description
IAvg	DINT	Averaged current measurement in mA . The value is calculated as an arithmetic mean value of ADC samples of one EtherCAT cycle.
UAvg	DINT	Averaged voltage measurement in \mathbf{mV} . The value is calculated as an arithmetic mean value of ADC samples of one EtherCAT cycle.
l(mA)[x]	DINT	A list of 8 current measurements in mA . nSamplesValid tells how many of them are valid and usable. The value is a single ADC sample - no average calculation applies. The values are equidistantly created within one EtherCAT cycle.
U(mV)[x]	DINT	A list of 8 voltage measurements in mV . nSamplesValid tells how many of them are valid and usable. The value is a single ADC sample - no average calculation applies. The values are equidistantly created within one EtherCAT cycle.
nSamplesValid	BYTE	Shows how many of the oversample values are valid.
Ovrn	BYTE	Indicator to if measured current is above limits.
Status	BYTE	Indicates the health of the Powerlens and current transducer 0x00 : Busy - Powerlens is initialising, booting or calibrating; no measurement data is produced; this state should be non-permanent 0x01 : OK - normal operation mode 0x02 : Transducer offline - current transducer not connected or shows error on status pins (see SIGNALTEC/LEM documentation for details) 0x03 : Out of range - One or both AD converters indicate overrun, i.e. the input current or the voltage on the Powerlens is too high
_RSV0	BYTE	Used for data alignment - not to be used
SampleCnt	DINT	Number of samples since device start
Pavg	REAL	Averaged power measurement. This value is provided for convenience and build from lavg x Uavg .
Q	REAL	Difference of Q_Plus and Q_Minus in As
Q_Plus	REAL	Accumulated positive electrical charge since last reset in As
Q_Minus	REAL	Accumulated negative electrical charge since last reset in As
w	REAL	Difference of W_Plus and W_Minus in Wh
W_Plus	REAL	Accumulated positive electrical energy since last reset in Wh
W_Minus	REAL	Accumulated negative electrical energy since last reset in Wh
MeterStop	BYTE	Reflects the current value of the MeterStop variable
MeterReset	BYTE	Reflects the current value of the MeterReset variable
_RSV1, _RSV2	BYTE	Used for data alignment - not to be used

Mode Process Data Mapping

Data Field	Data Type	Description
MeterStop	BYTE	Writable parameter to start/stop the Q,W counters.
MeterReset	BYTE	Writable parameter to control the Q,W counters.

The principle function and system behavior of MeterStop / MeterReset are shown in the following table:

	Counters running	Counters stopped
MeterStop : 0	Counters keep running	Counter start running based on the last values.
MeterStop : 1	Counters stop and keep reporting the last values	No effect
MeterReset : 0->1	Counters reset to 0 and immediately start counting again	Counters reset to 0
MeterReset : 1->0	No effect	No effect

Data Field	Data Type	Description
RunMode	BYTE	0 : Normal Operation 1 : Device shows dummy values for all U (100V) and all I (60A) to support integration of Powerlens devices; counters for Q and W run with the dummy values

CoE Parameters

Below the meaning of the Powerlens specific CoE parameters are explained. Where possible the values of the parameters and variables are defined in ENUM types and relevant information can be obtained on the graphical user interface.

Informational Parameters

ieneral EtherCA	T DC Process Data Plo	Startup CoE - Online Online
Update L Advanced	ist 🗌 Auto Update	Single Update Show Offline Data
Add to Star	tup Online Data	Module OD (AoE Port): 0
Index	Name	Flags Value
1000	Device type	RO 0x00011389 (70537)
1001	Error register	RO 0x00 (0)
1008	Device name	RO PowerLens
1009	Hardware version	RO 1.0
100A	Software version	RO V1.15B1
i⊟ 1018:0	Identity	>4 <
1018:01	Vendor ID	RO 0x00000B19 (2841)
1018:02	Product code	RO 0x0000AA5B (43611)
1018:03	Revision	RO 0x0000034 (52)
1018:04	Serial number	RO 0x0000008 (8)
1		-

Parameter	Description
Device type	Defines the CoE profile
Error register	Error code register
Device name	"PowerLens"
Hardware version	Numeric version of the hardware
Software version	Version of the FW
Vendor ID	Redcur EtherCAT Vendor ID 0xB19
Product code	Numeric code of the Powerlens product (0xAA5B)
Revision	Numeric revision of the FW used for ESI file
Serial number	Serial number of the device

Config Parameters

	i∃ 8000:0	Config		> 10 <
	8000:01	Ofc-I	RW	2412
	8000:02	Ofc-U	RW	124
	8000:03	Fsc-I	RO	32800
	8000:04	Fsc-U	RO	34958
	8000:05	Zero Adj-I	RW	Nop (0)
	8000:06	Zero Adj-U	RW	Nop (0)
	8000:07	AdcFilter	RO	LowLatency (2)
	80:008	Osr	RO	OSR_WB128/LL512 (2)
	8000:09	CalibClock	RO	0
	A0:008	MeterReset	RW	Nop (0)
1	<u> </u>	-		

Parameter	Description
Ofc-I	Offset of the measured current. The unit is in ADC values. This value can be edited by the user. Changing this value takes immediate effect. See "Adjusting the offsets" for details.
Ofc-U	Offset of the measured voltage. The unit is in ADC values. This value can be edited by the user. Changing this value takes immediate effect. See "Adjusting the offsets" for details.
Fsc-I	Gain setting for measured current. This value is set properly upon manufacturing to calibrate the device for the shunt resistor, operational amplifiers etc
Fsc-U	Gain setting for measured voltage. This value is set properly upon manufacturing to calibrate the device for the shunt resistor, operational amplifiers etc

Parameter	Description
ZeroAdj-I	Trigger for automated offset setting for current measurment. User should use this parameter to adjust the offset instead of the Ofc parameter. See "Adjusting the offset" for details.
ZeroAdj-U	Trigger for automated offset setting for voltage measurment. User should use this parameter to adjust the offset instead of the Ofc parameter. See "Adjusting the offset" for details.
AdcFilter	Shows the activated filter in the circuitry. This value is set during manufacturing. In the case shown above the "Low Latency" Filter is used.
Osr	Oversampling Rate of the ADC. In the given case we use a 2048 oversampling rate as the Low Latency (LL) filter is active
CalibClock	Calibration of the internal clock - currently no exposed via CoE
MeterReset	Trigger the reset of the Q,W counters.

Adjusting the offset for current measurement (ZeroAdj-I)

Over time or when replacing the SIGNALTEC/LEM transducer it might be necessary to adjust the offset. In principal there are two ways to do that.

- 1. Editing the CoE parameter Ofc-I.
- 2. Using the Automated offset setting capability of the Powerlens, using the ZeroAdj-I parameter.

For both ways it is important to prepare the system by a) attaching the current transducer and check that it is properly powered on and b) to make sure there primary current is 0.

For method 2 double click on ZeroAdj-I and set the value in the Enum field to "Start".

Powerlens will basically do what is described as method 1 in the background.

Adjusting the offset for voltage measurement (ZeroAdj-U)

Over time it might be necessary to adjust the offset for the voltage measurement system.

- 1. Editing the CoE parameter Ofc-U.
- 2. Using the Automated offset setting capability of the Powerlens, using the ZeroAdj-I parameter.

For both ways it is important to prepare the system by shorting the voltage input to ensure exactly 0V.

For method 2 double click on ZeroAdj-U and set the value in the Enum field to "Start".

Bringing into Service on CAN Bus

To connect Powerlens to a CAN bus system you need to connect the CAN bus interface. The parameters for CAN can be configured via the USB interface of Powerlens. Set up a connection with a USB cable to your desktop computer. After connecting the USB a serial device should show up in the system device manager - COM6 in the example below.

To access Powerlens via USB use a SW application to set up a serial communication, e.g. PuTTY using the serial device.

The application window will pop up and after typing <RET> you will see the greeting "PLNS App Version: xxx" command prompt >>.

The command SET is used to read and write system parameters. A SET command without argument shows all system parameters.

The following CAN parameters can be configured:

- Baudrate
- Message ID
- Measurement Cycle

Baudrate - CANBAUD

To change the CAN baud rate enter SET CANBAUD < xxx > while xxx ist the baud rate in kbps. For example SET CANBAUD 1000 sets the baud rate to 1000kbps.

The following baud rates are possible: 50k...1000k whereas to avoid congestion on the CAN bus the minimum baud rate should be 160kbps!

The command will take immediate effect.

Message ID - CANID

The default base message ID is 0x530 which can be changed with the command SET CANID <xxx>. For example SET CANID 230 will set the CAN base ID to 0x230.

Please note that the other message IDs (0x540 - 0x590) will be moved accordingly!

In the above example they would be 0x240 - 0x290. Upon changing the base ID the DBC-File needs to be adapted to ensure proper decoding.

After changing the CAN message id the system needs a power cycle to activate the change.

Measurement Cycle - CANCYCLE

The default measurement cycle is 500ms. It can be changed with the command SET CANCYCLE <xxx> while xxx is the cycle time in milliseconds.

For example SET CANCYCLE 50 will change the measurement cycle to 50 ms.

The range of valid cycle times is 1...2000.

The command will take immediate effect.

Note: The Messages 0x530 and 0x540 are sent upon every cycle defined in CANCYCLE. But, with every cycle only one of the messages 0x570, 0x580 and 0x590 are sent - in turn.

Redcur GmbH Reutersbrunnenstraße 27 90429 Nürnberg Germany

info@redcur.com www.redcur.com