
User’s
Manual DL950 Acquisition

Application Programming
Interface

IM D033-01EN
1st Edition

nbn Austria GmbH

iIM D033-01EN

This user’s manual contains useful information about the precautions, functions, and API
specifications of the DL950 series acquisition API (DL950ACQAPI.dll).
To ensure correct use, please read this manual thoroughly before operation. Keep this
manual in a safe place for quick reference.
For information about the handling precautions, functions, and operating procedures
of the DL950 series and the handling and operating procedures of Windows, see the
relevant manuals.

Notes
•	 The contents of this manual are subject to change without prior notice as a result

of continuing improvements to the instrument’s performance and functionality. The
figures given in this manual may differ from those that actually appear on your screen.

•	 Every effort has been made in the preparation of this manual to ensure the accuracy
of its contents. However, should you have any questions or find any errors, please
contact your nearest YOKOGAWA dealer.

Trademarks
•	 Windows 10 is a registered trademark or trademark of Microsoft Corporation in the

United States and/or other countries.
•	 In this manual, the TM and ® symbols do not accompany their respective registered

trademark or trademark names.
•	 Other company and product names are trademarks or registered trademarks of their

respective holders.

Revisions
1st Edition:	 November 2021

1st Edition: November 2021 (YMI)
All Rights Reserved. Copyright © 2021 Yokogawa Test & Measurement Corporation

ii IM D033-01EN

Notes on Usage

Usage Precautions
•	 This software is a library designed exclusively for DL950 series acquisition. It cannot

be used with other products.
•	 Check the version of this software and the firmware version of the DL950 prior to use.

This software is compatible with DL950 firmware version 1.10 and later.
•	 For details on how to use the DL950, see the instruction manual provided with the

instrument.

iiiIM D033-01EN

Software License Agreement

Yokogawa Test & Measurement Corporation

DL950 Acquisition Application Programming Interface License Agreement
Important: Read the following terms and conditions carefully.

By installing or using DL950 Acquisition Application Programming Interface (hereafter referred to as This Software), you accept all
terms and conditions in this license agreement. All rights pertaining to the software—including property rights, ownership rights, and
intellectual property rights—belong to Yokogawa Test & Measurement Corporation (hereafter referred to as YOKOGAWA), YOKOGAWA’s
affiliated company, or original proprietor that has granted rights for licensing the software to customers based on this agreement
(hereafter referred to as the original proprietor). Customers do not have any other rights other than the right to use the software in
accordance with this agreement. This Software is provided for free on an “as-is” basis. You are liable for all responsibilities arising from
using This Software and all responsibilities arising from referring to This Software. Regardless of whether This Software is used, you
are entirely responsible for its quality, technical requirements, and regulatory requirements or regulatory conformance.

This software may contain open source software (hereafter referred to as OSS) in addition to the software that YOKOGAWA holds the rights to
or the software that YOKOGAWA has been authorized to license. License terms appropriate for each OSS component are applicable in place
of the terms of this license. If there is a discrepancy between the terms of the OSS license and the terms of this license, the license terms of the
corresponding OSS take precedence.

Article 1: No Warranty
1.	This Software is provided for free on an “as-is” basis without any warranty. YOKOGAWA will not be liable for defects or non-fulfillment of

any kind. YOKOGAWA gives no guarantee that (1) the functions included in This Software will meet your requirements or your customer’s
requirements, (2) This Software will run without errors (e.g., bugs) or interruptions, (3) the defects and errors (e.g., bugs) in This Software will be
corrected, (4) there will be no inconsistencies, mutual interference, or other effects between This Software and other software, (5) This Software
or the product of This Software is correct, accurate, reliable, or up-to-date, (6) This Software is compatible with specific software required for
This Software to run, or (7) This Software will not be accessed illegally or attacked through its vulnerability or the like.

2.	YOKOGAWA is not always able to repair defects in or respond to questions or inquiries about This Software. Further, the contents of the
software are subject to change without prior notice as a result of continuing improvements to the software’s performance and functions.

Article 2: Your Responsibilities
The following acts are prohibited unless YOKOGAWA agrees or stipulates otherwise in writing.

(1)	 Duplicate This Software.
(2)	 Sell, lend, distribute, transfer, pledge, or re-license This Software or the right to use This Software or transmit it to the public or make it

transmittable.
(3)	 Share This Software in a virtual environment (regardless of the technical method such as physical computers, virtual computers, etc.).
(4)	 Convert or copy This Software to any human readable form (e.g., source program) by dumping, reverse assembling, reverse compiling,

reverse engineering, or the like. Modify or attempt to modify This Software into another form by correcting or translating into another
language.

(5)	 Remove or attempt to remove the protection mechanism (copy protection) used on or added to This Software.
(6)	 Delete the copyright, trademarks, logos, and other indications displayed on This Software.
(7)	 Unless YOKOGAWA has agreed otherwise in writing, create derivative software or other computer programs or allow the creation of such

works.

Article 3: Restriction on Use
1.	Unless a separate written agreement is drawn between you and YOKOGAWA, This Software is not designed, manufactured, or licensed to be

used for aircraft operation, ship navigation, or the planning, construction, maintenance, operation, or use of on-ground support equipment or
nuclear facilities.

2.	 If you are using This Software for a purpose described in the previous clause, YOKOGAWA will not be held liable for any claim or damage
incurred as a result of using This Software, and you will take full responsibility in resolving the issue.

Article 4: Limitation of Liability
YOKOGAWA will not be held liable for any damages incurred in relation to This Software.

Article 5: Court with Jurisdiction
Should a dispute arise as a result of using This Software or in regards to this license agreement, both parties agree to discuss the issue in good
faith. If an agreement cannot be reached, the Tokyo District Court shall be the exclusive agreement jurisdictional court of the first hearing.

iv IM D033-01EN

Contents

Notes on Usage... ii
Software License Agreement.. iii

Chapter 1	 Software Overview
1.1	 Software Overview.. 1-1

Chapter 2	 Acquisition API Overview
2.1	 API Overview... 2-1
2.2	 API Overview... 2-2

Initialization and termination.. 2-2
Connection and disconnection.. 2-2
Getting or setting waveform acquisition conditions... 2-2
Getting waveform data.. 2-2
Converting waveform data.. 2-2
Event listener and callback functions.. 2-2

2.3	 Basic Flow of How to Use the API... 2-3
Unmanaged application (free run mode)... 2-4
Managed application (free run mode)... 2-5

Chapter 3	 API Functional Specifications
3.1	 Definition of Class... 3-1

Class ScEventListener.. 3-1
3.2	 Definition of Constants.. 3-2

SC_SUCCESS.. 3-2
SC_ERROR.. 3-2
SC_WIRE_USBTMC... 3-2
SC_WIRE_VISAUSB.. 3-2
SC_WIRE_VXI11.. 3-2
SC_WIRE_HISLIP... 3-3
SC_FREERUN.. 3-3
SC_EVENTTYPE_OVERRUN.. 3-3

3.3	 Detailed API Specifications... 3-4
ScInit... 3-4
ScExit.. 3-4
ScOpenInstrument.. 3-5
ScCloseInstrument.. 3-6
ScSetControl... 3-6
ScGetControl... 3-7
ScGetBinaryData... 3-8
ScQueryMessage.. 3-9
ScSet10GMode... 3-10
ScGet10GMode... 3-10
ScStart..3-11
ScStop..3-11
ScLatchData...3-11
ScGetLatchRawData... 3-12
ScGetChAcqData.. 3-14
ScSetSamplingRate.. 3-16
ScGetSamplingRate.. 3-16
ScGetChannelSamplingRate.. 3-17
ScGetChannelBits... 3-17

vIM D033-01EN

ScGetChannelGain... 3-18
ScGetChannelOffset... 3-18
ScGetChannelType... 3-19
ScAddEventListener.. 3-20
ScRemoveEventListener... 3-20
ScAddCallback.. 3-21
ScRemoveCallback... 3-21

3.4	 DLL Linking Method... 3-22

Chapter 4	 Appendix
4.1	 About Free Run Mode... 4-1

Sampling Rate, Wire Type, and Connection Mode... 4-2
Required memory size.. 4-2
ScGetLatchRawData Data Structure... 4-3
Notes for when acquiring at multiple sample rates or low sample rates........................... 4-3
Data in timestamp format.. 4-4

Contents

1-1IM D033-01EN

1.1	 Software Overview

Description
This software (DL950ACQAPI.dll) provides an application programming interface (API)
for obtaining waveform data being acquired by the DL950 series.

Functions
This software can be used to perform the following functions. For details, see “Detailed
API Specifications.”

•	 Initializing the API
•	 Connecting and disconnecting from measuring instruments
•	 Setting parameters
•	 Getting waveform data

Software structure
This software package contains the following items.

•	 DL950ACQAPI User’s Manual (this manual)
•	 API files (see below)

File name Content
DL950ACQAPI.dll ACQAPI library
DL950ACQAPI64.dll ACQAPI Library 64-bit Version
DL950ACQAPI.lib ACQAPI Import Library for C++
DL950ACQAPI.h Function Declaration Header File for C++
DL950ACQAPINet.dll Free Run API Library for .NET
tmctl.dll Communication Library
tmctl64.dll Communication Library 64-bit Version

System requirements
PC
A PC that meets the following conditions is required.
	 A PC running the English or Japanese version of Windows 10 (32 bit or 64 bit)
Note that when waveform acquisition in free run mode is performed using this software,
data is saved in a specified buffer. For the memory size required by the API, see “Required
memory size” in section 4.1.

Development Environment
Visual Studio 2017 or later, .NET Framework 4.7 or later

System requirements for running user programs
The following environment may be necessary to perform waveform acquisition in free run
mode using a program that you create with this software depending on your waveform
acquisition conditions and connection type.
When using 10Gbit Ethernet connection
• 	 CPU
	 Desktop PC
	 Intel Core i7-1165G7 or better, quad core (8 threads) or better, 4.7 GHz or faster
• 	 Memory
	 16 GB or more
•	 SSD
	 512 GB or more (M.2 slot SSD recommended, read/write performance 3 GB/s or

better)

Chapter 1	 Software Overview

1-2 IM D033-01EN

When using 1Gbit Ethernet or USB connection
•	 CPU
	 Intel Core i5-10210U or better, quad core (8 threads) or better, 4.2 GHz or faster
• 	 Memory
	 8 GB or more
•	 SSD
	 256 GB or more (read/write performance 400 MB/s or better)

USB driver
To use this software over a USB connection, you need a dedicated USB driver (YTUSB)
or an IVI driver (VISA). You can download the latest USB driver from the following web
page:

	 http://tmi.yokogawa.com/service-support/downloads/

Run Setup.exe in the YTUSB folder. The installation wizard starts. For details on the
installation procedure, see the manual (ReadMe_en.pdf) in the YTUSB folder.

1.1 Software Overview

http://tmi.yokogawa.com/service-support/downloads/

2-1IM D033-01EN

2.1	 API Overview

The API is provided as a dynamic link library (DLL). The API can be used by linking user
applications with this DLL.
As shown in the following figure, the API provides functions for obtaining waveform data
being acquired by the instrument and setting waveform acquisition conditions.

DL950ACQAPI.dll

DL950 Series

User Application

PC(Windows)

Transfer

Call

Waveform

tmctl.dll

DL950ACQAPINet.dll

The API only supports data acquisition in free run mode.

Free run mode
Free run mode is used to acquire data from the start to the end of waveform acquisition.
*	 Zoom waveform display is not possible on the DL950 while waveform acquisition in

free run mode is in progress.

Chapter 2	 Acquisition API Overview

2-2

2.2	 API Overview

This section provides an overview of the API functions.

Initialization and termination
The API functions for initialization and termination are as follows.
API Name Function Page
ScInit Initialize the API 3-4
ScExit Close the API 3-4

Connection and disconnection
The API functions for connecting and disconnecting from the measurement instrument
are as follows.
API Name Function Page
ScOpenInstrument Open an instrument and get the API handle 3-5
ScCloseInstrument Close the instrument 3-6

Getting or setting waveform acquisition conditions
The API functions for getting and setting measurement conditions are as follows.
API Name Function Page
ScSetControl Send a command to the instrument 3-6
ScGetControl Receive a command response from the instrument 3-7
ScGetBinaryData Receive binary data 3-8
ScQueryMessage Send a command and receive a response 3-9
ScSet10GMode Sets the 10G high-speed transmission mode 3-10
ScGet10GMode Gets the 10G high-speed transmission mode 3-10
ScStart Start acquisition 3-11
ScStop Stop acquisition 3-11
ScSetSamplingRate Set the sampling rate 3-16
ScGetSamplingRate Get the sampling rate 3-16
ScGetChannelSamplingRate Get the channel sampling rate 3-17

Getting waveform data
The API functions for getting free run waveform data are as follows.
API Name Function Page
ScLatchData Latch the acquisition information 3-11
ScGetLatchRawData Get waveform data after latching 3-12
ScGetChAcqData Get data information of a specified channel from the

block data obtained using ScGetLatchRawData
3-14

Converting waveform data
The API functions for converting waveform data into physical values are as follows.
API Name Function Page
ScChannelBits Get the data bit count of the channel 3-17
ScGetChannelGain Get the gain value of the channel (used to convert

waveform data into actual data)
3-18

ScGetChannelOffset Get the offset value of the channel (used to convert
waveform data into actual data)

3-18

ScGetChannelType Get the type of channel waveform data 3-19

Event listener and callback functions
The event listener and callback API functions are as follows.
API Name Function Page
ScAddEventListener Add an event listener (C++ only) 3-20
ScRemoveEventListener Delete the event listener (C++ only) 3-20
ScAddCallback Add a call back method (C# only) 3-21
ScRemoveCallback Delete the call back method (C# only) 3-21

2-3IM D033-01EN

2.3	 Basic Flow of How to Use the API

Each API function is used through a handle. First, a handle is created when an
instrument is opened. Then, the target instrument is accessed by passing the handle as
an API parameter.

		

Event listener

Continuous
acquisition?

Disconnect from the
instrument

ScCloseInstrument()

End using the API
ScExit()

Stop acquisition
ScStop

[No]

[Yes]

Start

End

Begin using the API
ScInit()

DL950ACQAPI (FreerunMode)

Connect to the
instrument

ScOpenInstrument()

Add event listener
ScAddEventListener()

Start acquisition
ScStart()

Latch acquisition
ScLatchData()

Get wave data
ScGetLatchRawData()

User program

User program
(Reset latch & wave data)

Set parameters
ScSetControl()

ScQueryMessage()

Receive events
handle EventScOverrun()

2-4

Unmanaged application (free run mode)
The basic flow of how to use the API and a sample code for C++ (unmanaged
application) are provided below.
Error procedures are omitted.

1.	 Initialize the API (required).

#include “ScAPI.h”

. . .

ScInit();

. . .

2.	 Open the instrument (DL950) and create a handle (required).
	 After opening the instrument, use this handle to access the instrument.

ScHandle handle;

ScOpenInstrument(SC_WIRE_USB,“91K225903”,SC_FREERUN,&handle);

3.	 Add an event listener.
	 In a free run mode, when an interface other than 10GEther is in use, data overrun can

be detected. To detect overruns, use overrun events. To use overrun events, create
a class that inherits the ScEventListener class, and add it to the API. Overwriting the
handleEventScOverrun() method causes the same method to be called when an
overrun occurs. When an overrun is detected in free run mode, the data retrieved
using waveform data acquisition becomes invalid (received data is no longer
guaranteed). If this occurs, latch commands can be sent consecutively to clear this
state.

	 Note that if waveform acquisition sampling is slow and the communication
environment allows data to be retrieved continuously, waveform acquisition is possible
without adding overrun detection.

class cYourClass : public ScEventListener {

public:

 virtual void handleEventScOverrun(ScHandl handle);

};

. . .

cYourClass* yourClass = new YourClass();

ScAddEventListener(handle, yourClass);

4.	 Start acquisition.

ScStart(handle);

5.	 Latch (required to acquire waveforms).
	 This marks the acquisition position of the waveform data.

ScLatchData(handle);

6.	 Get the waveform.

char buff[100000];

ScGetLatchRawData(handle, buff, sizeof(buff), &recieveLen);

. . .

	 Repeat steps 5 (latch) and 6 (waveform data acquisition) during waveform acquisition.

7.	 Stop acquisition.

ScStop(handle);

2.3 Basic Flow of How to Use the API

2-5IM D033-01EN

8.	 Disconnect from the instrument (required).
	 The handle is invalidated when this API function is called.

ScCloseInstrument(handle);

9.	 Close the API (required).

ScExit();

Managed application (free run mode)
The basic flow of how to use the API and a sample code for C# (managed application)
are provided below.
Error procedures are omitted.

1.	 Initialize the API (required).
	 Add ScAPINet.dll to References of the Visual Studio Solution Explorer in advance.

The name space is ScAPINet, and the API is defined as methods in the ScAPI class.

using ScAPINet;

. . .

ScAPI api = new ScAPINet.ScAPI();

api.ScInit();

2.	 Open the instrument (DL950) and create a handle (required).
	 After opening the instrument, use this handle to access the instrument.

int handle;

api.ScOpenInstrument(�ScAPI.SC_WIRE_USB,“91K225903”,

SC_FREERUN,out handle)

3.	 Add an event callback method.
	 In a free run mode, when an interface other than 10GEther is in use, data overrun

can be detected. To detect overruns, use overrun events. To use overrun events,
add a callback method to the API. The same method will be called when overrun
events occur. When an overrun is detected in free run mode, the data retrieved using
waveform data acquisition becomes invalid (received data is no longer guaranteed). If
this occurs, latch commands can be sent consecutively to clear this state.

	 Note that if waveform acquisition sampling is slow and the communication
environment allows data to be retrieved continuously, waveform acquisition is possible
without adding overrun detection.

private void overrunCallback(int hndl, int type)

{

}

api.ScAddCallback(hndl, overrunCallback, SC_EVENTTYPE_OVERRUN);

4.	 Start acquisition.

api.ScStart(handle);

5.	 Latch (required to acquire waveforms).
	 This marks the acquisition position of the waveform data.

api.ScLatchData(handle);

2.3 Basic Flow of How to Use the API

2-6

6.	 Get the waveform.

byte[] buff = new byte[100000];

int recieveLen;

api.ScGetLatchRawData<byte>(�handle, buff, buff.Length, out

receiveLen);

	 Repeat steps 5 (latch) and 6 (waveform data acquisition) during waveform acquisition.

7.	 Stop acquisition.

api.ScStop(handle);

8.	 Disconnect from the instrument (required).
	 The handle is invalidated when this API function is called.

api.ScCloseInstrument(handle);

9.	 Close the API (required).

api.ScExit();

2.3 Basic Flow of How to Use the API

3-1IM D033-01EN

Chapter 3	 API Functional Specifications

3.1	 Definition of Class

This section explains the API class definitions.

Class ScEventListener
Function:

Event listener class for receiving events (C++ only)
Syntax:

class ScEventListener {

public:

	 /*!

	 * \brief Overrun handler

	 * \param handle API handle

	 * \param dataCount count of before LATCH posision

	 */

	 virtual void handleEventScOverrun(ScHandle handle){}

	

};

Details:
The overrun event in free run mode can be registered.
Overwriting handleEventScOverrun() causes the same method to be called automatically
when an overrun occurs.
Use ScAddEventListener() to create instances.

3-2

3.2	 Definition of Constants

SC_SUCCESS
Description:

Success
Syntax:

#define SC_SUCCESS 0
Details:

Definition of a result returned by API functions

SC_ERROR
Description:

Error
Syntax:

#define SC_ERROR 1
Details:

Definition of a result returned by API functions

SC_WIRE_USBTMC
Description:

USB wire type (YTUSB)
Syntax:

#define SC_WIRE_USBTMC
Details:

Definition of a wire type for connecting to the DL950 series
* Select this to use a USB (TMCTL standard driver) connection.

SC_WIRE_VISAUSB
Description:

USB wire type (VISAUSB)
Syntax:

#define SC_WIRE_USB
Details:

Definition of a wire type for connecting to the DL950 series
* Select this to use a USB (when a VISA standard driver is in use) connection.

SC_WIRE_VXI11
Description:

Ethernet wire type (VXI11)
Syntax:

#define SC_WIRE_VXI11
Details:

Definition of a wire type for connecting to the DL950 series
* Select this to use GigaBitEther.

3-3IM D033-01EN

3.2 Definition of Constants

SC_WIRE_HISLIP
Description:

Ethernet wire type (HiSLIP)
Syntax:

#define SC_WIRE_HISLIP
Details:

Definition of a wire type for connecting to the DL950 series
* Select this to use the 10G high-speed data transmission mode.

SC_FREERUN
Description:

Free run operation
Syntax:

#define SC_FREERUN
Details:

Specify this to perform free run mode.
Data received from the DL950 is passed as-is to the program as block data.

SC_EVENTTYPE_OVERRUN
Description:

Event type (overrun)
Syntax:

#define SC_EVENTTYPE_OVERRUN
Details:

Specify the event type for registering an overrun event callback in free run mode.
This is used only with the .NET version (C#).

3-4

3.3	 Detailed API Specifications

This section provides the details of the API.

ScInit
Description:

Initialize the API
Syntax:

[C++]	 ScResult ScInit(void);
[C#]	 int ScInit();

Parameters:
None

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Initialization error (already initialized)

Detail:
Call once at the start of using the library.

Example [C++]:
#include “ScAPI.h”

...

if (ScInit() == SC_SUCCESS) {

...

}

Example [C#]:
using ScAPINet;

...

ScAPINet.ScAPI api = new ScAPINet.ScAPI();

if (api.ScInit() == ScAPI.SC_SUCCESS)

{

...

}

ScExit
Description:

End using the API
Syntax:

[C++]	 ScResult ScExit(void);
[C#]	 int ScExit();

Parameters:
None

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error (already terminated or not initialized)

Detail:
Call once at the end of using the API.

3-5IM D033-01EN

3.3 Detailed API Specifications

ScOpenInstrument
Description:

Open the instrument
Syntax:

[C++]	 ScResult ScOpenInstrument(int wire, char* address, int mode, ScHandle* rHndl);
[C#]	 int ScOpenInstrument(int wire, string address, int mode, out int rHndl);

Parameters:
[IN] wire	 Interface type
	 SC_WIRE_USBTMC	 USBTMC(YTUSB)
	 SC_WIRE_VISAUSB	 VISAUSB
	 SC_WIRE_VXI11	VXI-11
	 SC_WIRE_HISLIP	 HiSLIP
[IN] address	 Connection destination address (instrument serial number for USB)
[IN] mode	 Connection mode
	 SC_FREERUN	 Free run
[OUT] rHndl	 Instrument handle

Return value:
SC_SUCCESS	 Connection successful
SC_ERROR	 Connection error

Detail:
Connects to the instrument and returns the instrument handle.
Each API passes this handle to communicate with the instrument.
When a connection is established, the waveform acquisition conditions of the measuring
instrument are set automatically according to the mode parameter.

Note:
Multiple connections to a single instrument is not possible.
To use 10Gbps Ethernet, select SC_WIRE_HISLIP.

Example [C++]:
ScHandle hndl;

if (ScOpenInstrument(SC_WIRE_USB, “91K225895”, SC_FREERUN, &hndl)

== SC_SUCCESS) {

...

}

Example [C#]:
int hndl;

if (api.ScOpenInstrument(ScAPI.SC_WIRE_USB, “91K225895” , SC_

FREERUN, out hndl) == ScAPI.SC_SUCCESS) {

 ...

}

3-6

ScCloseInstrument
Description:

Close the instrument
Syntax:

[C++]	 ScResult ScCloseInstrument(ScHandle hndl);
[C#]	 int ScCloseInstrument(int hndl);

Parameters:
[IN] handle	 Instrument handle

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error (not connected or already disconnected)

Detail:
Disconnects from the instrument connected using ScOpenInstrument().
If the measuring instrument is in free run mode the connection is disconnected, the
instrument is automatically changed from free run mode back to trigger mode.

Note:
The handle is invalidated when this API function is called.

ScSetControl
Description:

Send a command
Syntax:

[C++]	 ScResult ScSetControl(ScHandle hndl, char* command);
[C#]	 int ScSetControl(int hndl, string command);

Parameters:
[IN] hndl	 Instrument handle
[IN] command	 Communication command string

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Send a command to the instrument

Note:
The return value cannot be used to determine communication command errors. It only
indicates whether the command was sent successfully.

3.3 Detailed API Specifications

3-7IM D033-01EN

ScGetControl
Description:

Receive a response to a communication command
Syntax:

[C++]	 ScResult ScGetControl(ScHandle hndl, char* buff, int buffLen, int* receiveLen);
[C#]	 int ScGetControl<DT>(int hndl, ref DT[] buff, int buffLen, out int receiveLen);

Parameters:
[IN] hndl		 Instrument handle
[OUT] buff		 Receive buffer
[IN] buffLen		 Buffer size
[OUT] receiveLen	 Length of the received response

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error (no data to be received)

Detail:
Receives a response to a communication command sent in advance from the instrument.

Note:
An error occurs if a communication command has not been sent in advance.

Example [C++]:
char buff[BUFSIZ];

int receiveLen;

if (ScGetControl(hndl, buff, sizeof(buff), &receiveLen) == SC_

SUCCESS) {

...

}

Example [C#]:
byte[] buff = new byte[256];

int receiveLen;

if (api.ScGetControl<byte>(hndl, ref buff, buff.Length, out

receiveLen) == ScAPI.SC_SUCCESS) {

string msg = System.Text.Encoding.ASCII.GetString(buff);

printMessage(msg);

}

3.3 Detailed API Specifications

3-8

ScGetBinaryData
Description:

Receive binary data
Syntax:

[C++]	 ScResult ScGetBinaryData(�ScHandle hndl, char* command, char* buff, int
buffLen, int* receiveLen, int* endFlg);

[C#]	 int ScGetBinaryData<DT>(�int hndl, string command, DT[] buff, int buffLen, out int
receiveLen, out endFlg);

Parameters:
[IN] hndl		 Instrument handle
[IN] command		 Communication command for requesting binary data
			 Specify 0 (null pointer) to receive data being received.
[IN] buff		 Buffer for receiving binary data
[IN] buffLen		 Size of the buffer for receiving binary data (bytes)
[OUT] receiveLen	 Size of the received binary data (bytes)
[OUT] endFlg		 Receive end flag
	 0		 Receiving (remaining data available)
	 1		 Receive end

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Sends a command for querying binary data and receives the response.
To continue receiving data when the ScGetBinaryData, ScGetLatchAcqData, or
ScGetAcqData flag is not raised, execute this API command with the parameter set to 0
(null pointer).

Note:
The behavior when a command that does not send binary data is specified is undefined.

Example [C++]:
char buff[1024];

int receiveLen;

if (ScGetBinaryData(hndl, “:MONitor:SEND:ALL?”, buff,

sizeof(buff), &receiveLen)

 == SC_SUCCESS) {

...

}

Example [C#]:
byte[] buff = new byte[1024];

int receiveLen;

if (�api.ScGetBinaryData<byte>(hndl, “:MONitor:SEND:ALL?”, ref

buff, buff.Length, out receiveLen) == ScAPI.SC_SUCCESS)

{

...

}

3.3 Detailed API Specifications

3-9IM D033-01EN

ScQueryMessage
Description:

Send a command and receive its response
Syntax:

[C++]	 ScResult ScQueryMessage(�ScHandle hndl, char* command, char* buff, int
buffLen, int* receiveLen);

[C#]	 int ScQueryMessage(�int hndl, string command, out string buff, int getLen, out int
receiveLen);

Parameters:
[IN] hndl		 Instrument handle
[IN] command		 Communication command
[OUT] buff		 Receive buffer
[IN] buffLen		� Length of receive buffer (bytes). The length of data to receive

in the case of the .NET version.
[OUT] receiveLen	 Length of the received response

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
You can perform communication command transmission and response reception with
this single API method.

Note:
You cannot use this API method for commands that do not return responses.
In the case of C# (.NET version), specify the number of bytes to receive, not the receive
buffer size, in the fourth parameter.

Example [C#]:
char buff[256];

int receiveLen;

if (�ScQueryMessage(hndl, “*idn?”, buff, sizeof(buff), &receiveLen)

== SC_SUCCESS) {

...

}

Example [C#]:
string buff;

int receiveLen;

if (�api.ScQueryMessage(hndl, “*idn?”, out buff, 256, out

receiveLen) == ScAPI.SC_SUCCESS)

{

...

}

3.3 Detailed API Specifications

3-10

ScSet10GMode
Description:

Set the 10Gbps high-speed data transmission mode
Syntax:

[C++]	 ScResult ScSet10GMode(ScHandle hndl, int onoff);
[C#]	 int ScSet10GMode(int hndl, int onoff);

Parameters:
[IN] hndl	 Instrument handle
[IN] onoff	 10Gbps high-speed data transmission mode setting
		 0	 10Gbps high-speed data transmission mode disabled
		 1	 10Gbps high-speed data transmission mode enabled

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Set whether to use hardware-driven 10Gbps high-speed data transmission for ACQ data
transmission.

Note:
This command is available when a 10Gbps Ethernet connection is established and the
wire type is set to HiSlip.
Execute this command before starting acquisition (ScStart). The setting cannot be
changed during waveform acquisition.
Data can be transferred via 10Gbps Ethernet even if this mode is disabled, but overruns
are more likely to occur due to reduced transmission performance.

ScGet10GMode
Description:

Get the 10Gbps high-speed data transmission mode setting
Syntax:

[C++]	 ScResult ScGet10GMode(ScHandle hndl, int *onoff);
[C#]	 int ScGet10GMode<DT>(int hndl, out int onoff);

Parameters:
[IN] hndl	 Instrument handle
[OUT] onoff	 10G data transmission mode setting
		 0	 10G high-speed data transmission mode disabled
		 1	 10G high-speed data transmission mode enabled

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error (no data to be received)

Detail:
Checks whether hardware-driven 10Gbps high-speed data transmission mode is enabled
for ACQ data transmission.

3.3 Detailed API Specifications

3-11IM D033-01EN

ScStart
Description:

Start acquisition
Syntax:

[C++]	 ScResult ScStart(ScHandle hndl)
[C#]	 int ScStart(int hndl)

Parameters:
[IN] hndl	 Instrument handle

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Starts acquisition. (Sends a Start command.)

ScStop
Description:

Stop acquisition
Syntax:

[C++]	 ScResult ScStop(ScHandle hndl)
[C#]	 int ScStop(int hndl)

Parameters:
[IN] hndl	 Instrument handle

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Stops acquisition. (Sends a Stop command.)

ScLatchData
Description:

Latch the waveform data
Syntax:

[C++]	 ScResult ScLatchData(ScHandle hndl)
[C#]	 int ScLatchData(int hndl)

Parameters:
[OUT] hndl	 Instrument handle

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Marks the present acquisition position of the waveform data in the instrument.
This position is used as a reference for getting waveform data.

3.3 Detailed API Specifications

3-12

ScGetLatchRawData
Description:

Get latched waveform data in free run mode
Syntax:

[C++]	 ScResult ScGetLatchRawData(�ScHandle hndl, char* buff, int buffLen, int*
receiveLen, int* endFlg);

[C#]	 int ScGetLatchRawData<DT>(�int hndl, DT[] buff, int buffLen, out int receiveLen,
out endFlg)

Parameters:
[IN] hndl		 Instrument handle
[OUT] buff		 Save buffer
[IN] buffLen		 Length of save buffer
[OUT] receiveLen	 Size of the received binary data (bytes)
[OUT] endFlg		 Receive end flag
			 0	 Receiving (remaining data available)
			 1	 Receive end

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Gets latched waveform data.

Note:
The waveform data contains data of all acquisition channels and is provided in block
format. For details on the block format, see “ScGetLatchRawData Data Structure” in
section 4.1.
The returned waveform data is an AD value.
To convert to physical values, an appropriate data conversion is necessary according to
the data type obtained with ScGetChannelType. The following formula is used.
Physical value = AD value × Gain + Offset (Gain is obtained with ScGetChannelGain and
Offset with ScGetChannelOffset).
For the buffer size, see “Required memory size” in section 4.1, and specify a sufficient
size.
10G high-speed data
If endFlag is 0, use ScGetBinaryData to receive the rest of the data.

3.3 Detailed API Specifications

3-13IM D033-01EN

Example [C++]:
char buff[100000];

int size;

int endFlg;

if (ScGetLatchRawData(�hndl, buff, sizeof(buff), &size, &endFlg)

== SC_SUCCESS) {

...

}

Example [C#]:
byte[] buff = new byte[100000];

int size;

int endFlg;

if (�api.ScGetLatchRawData<byte>(hndl, buff, buff.Length, out

size, out endFlg) == ScAPI.SC_SUCCESS)

{

...

}

3.3 Detailed API Specifications

3-14

ScGetChAcqData
Description:

Get the waveform data position of a specified channel from the data retrieved with
ScGetLatchRawData

Syntax:
[C++]	 ScResult ScGetChAcqData(�int chNo, int subChNo, char* buff, int length, int*

chOffset, int* chSize, unsigned int* timeSec, ,
unsigned int* timeTick);

[C#]	 int ScGetChAcqData<DT>(�int chNo, int subChNo, DT[] buff,int length, out int
chOffset, out int chSize, out unsigned int timeSec, out
unsigned int timeTick)

Parameters:
[IN] chNo		 Channel number
[IN] subChNo		 Sub channel number (specify 0 if there are none)
[IN] buff		 Buffer containing data in block format
[IN] length		 Size of the buffer containing data in block format
[OUT] chOffset		� Offset position (number of bytes) to the head of the channel

data
[OUT] chSize		 Channel data size (number of bytes)
[OUT] timeSec		 Time (UnixTime) at the head of the retrieved data
[OUT] timeTikc		 Time (nanoseconds) at the head of the retrieved data

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Gets the data position of the specified channel from the retrieved waveform data (block
format).
The head time of the retrieved data is also obtained.

Programming tips:
When you use ScGetChAcqData to retrieve channel data in order to prevent data
overruns when performing waveform acquisition at a high sampling rate, we recommend
analyzing the retrieved data using a thread different from ScGetLatchRawData.
Further, when you perform waveform acquisition using 10G high-speed data streaming,
we recommend not using ScGetChAcqData in order to prevent data overruns but rather
using ScGetLatchRawData to only retrieve data and then using ScGetChAcqData to
retrieve channel data after the waveform acquisition is completed.

Note:
Prepare a buffer large enough to store the channel data. Calculate the necessary buffer
size based on the data size per point using ScGetChannelBits and the interval between
latches.
Since the waveform data is AD values, to convert to physical values, an appropriate data
conversion is necessary according to the data type obtained with ScGetChannelType.
The following formula is used.
Physical value = AD value × Gain + Offset (Gain is obtained with ScGetChannelGain and
Offset with ScGetChannelOffset).
If the specified channel data is not available, an error will occur.
If there is no relevant channel data between latches, the data size will be 0.
For details on the block format, see “ScGetLatchRawData Data Structure” in section 4.1.

3.3 Detailed API Specifications

3-15IM D033-01EN

Example [C++]:
char buff[100000];

int size;

if (�ScGetLatchRawData(hndl, buff, sizeof(buff), &size) == SC_

SUCCESS) {

int chOffset;

int chSize;

unsigned int timeSec,timeTick;

if (�ScGetChAcqData(1, 0, buff, sizeof(buff), &chOffset,

&chSize, &timeSec, &timeTick) == SC_SUCCESS) {

		 ...

}

...

}

Example [C#]:
byte[] buff = new byte[100000];

int size;

if (�api.ScGetLatchRawData<byte>(hndl, buff, buff.Length, out

size) == ScAPI.SC_SUCCESS)

{

int chOffset;

int chSize;

unsigned int timeSec;

unsigned int timeTick;

if (�api.ScGetChAcqData<byte>(1, 0, buff, buff.Length, out

chOffset, out chSize, out timeSec, out timeTick) ==

ScAPI.SC_SUCCESS)

{

		 ...

}

...

}

3.3 Detailed API Specifications

3-16

ScSetSamplingRate
Description:

Set the sampling frequency
Syntax:

[C++]	 ScResult ScSetSamplingRate(ScHandle hndl, double srate);
[C#]	 int ScSetSamplingRate(int hndl, double srate)

Parameters:
[IN] hndl	 Instrument handle
[IN] srate	 Sampling frequency (Hz)

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Sets the sampling frequency.

Note:
This cannot be set while waveform acquisition is in progress.

ScGetSamplingRate
Description:

Get the sampling frequency
Syntax:

[C++]	 ScResult ScGetSamplingRate(ScHandle hndl, double* srate)
[C#]	 int ScGetSamplingRate(int hndl, out double srate)

Parameters:
[IN] hndl	 Instrument handle
[OUT] srate	 Sampling frequency

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Gets the sampling frequency.

3.3 Detailed API Specifications

3-17IM D033-01EN

ScGetChannelSamplingRate
Description:

Get the channel sampling frequency
Syntax:

[C++]	 ScResult ScGetChannelSamplingRate(�ScHandle hndl, int chNo, int subChNo,
double* srate)

[C#]	 int ScGetChannelSamplingRate(�int hndlhNo, int chNo, int subChNo, out double
srate)

Parameters:
[IN] hndl	 Instrument handle
[IN] chNo	 Channel number
[IN] subChNo	 Sub channel number (specify 0 if there are none)
[OUT] srate	 Sampling frequency

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Gets the channel sampling frequency.

ScGetChannelBits
Description:

Get the channel’s data bit length.
Syntax:

[C++]	 ScResult ScGetChannelBits(ScHandle hndl, int chNo, int subChNo, int* bits);
[C#]	 int ScGetChannelBits(int hndl, int chNo, int subChNo, out int bits)

Parameters:
[IN] hndl	 Instrument handle
[IN] chNo	 Channel number (1 to 16)
[IN] subChNo	 Sub channel number (1 to 64)
[OUT] bits	 Data bit length (1 to 32)

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Gets the bit length of the channel data (valid AD values) to be acquired.

Note:
For CAN modules and the like, the returned value may not necessarily be the same as
the number of bits specified with Bit Cnt.

3.3 Detailed API Specifications

3-18

ScGetChannelGain
Description:

Get the channel gain
Syntax:

[C++]	 ScResult ScGetChannelGain(�ScHandle hndl, int chNo, int subChNo, double*
gain);

[C#]	 int ScGetChannelGain(int hndl, int chNo, int subChNo, out double gain)
Parameters:

[IN] hndl	 Instrument handle
[IN] chNo	 Channel number (1 to 16)
[IN] subChNo	 Sub channel number (1 to 64; specify 0 if there are none)
[OUT] gain	 Gain

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Gets the gain used to convert acquired waveform data into physical values.

ScGetChannelOffset
Description:

Get the channel’s data offset.
Syntax:

[C++]	 ScResult ScGetChannelOffset(�ScHandle hndl, int chNo, int subChNo, double*
offset);

[C#]	 int ScGetChannelOffset(int hndl, int chNo, int subChNo, out double offset)
Parameters:

[IN] hndl	 Instrument handle
[IN] chNo	 Channel number (1 to 16)
[IN] subChNo	 Sub channel number (1 to 64; specify 0 if there are none)
[OUT] offset	 Offset

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Gets the offset used to convert acquired waveform data into physical values.

3.3 Detailed API Specifications

3-19IM D033-01EN

ScGetChannelType
Description:

Get the channel data type
Syntax:

[C++]	 ScResult ScGetChannelType(ScHandle hndl, int chNo, int subChNo, int* type);
[C#]	 int ScGetChannelType(int hndl, int chNo, int subChNo, out int type)

Parameters:
[IN] hndl	 Instrument handle
[IN] chNo	 Channel number (1 to 16)
[IN] subChNo	 Sub channel number (1 to 64; specify 0 if there are none)
[OUT] type	 Data type

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Gets the measurement data type.

0	 ANALOG	 Analog format (real value = data * gain + offset)
1	 LOGIC		 Logic format
2	 FLOAT		 Single-precision floating-point format
3	 TIME			� 32-bit UNIX time and 32-bit fractional seconds in nanoseconds

(applies to G5 sub channel number 63 or GPS sub channel number 7)

3.3 Detailed API Specifications

3-20

ScAddEventListener
Description:

Add an event listener
Syntax:

[C++]	 ScResult ScAddEventListener(ScHandle hndl, ScEventListener* listener)
Parameters:

[IN] hndl	 Instrument handle
[IN] listener	 Pointer to the event listener class

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
A class that inherits the ScEventListener can be added as an event listener class.
The overrun event in free run mode can be registered.
Overwriting handleEventScOverrun() causes the same method to be called automatically
when an overrun occurs.

Note:
The overrun event is valid when the connection type is not 10GEther.
This cannot be used with the .NET version (C#).

Example (free run mode):
class cMyEvent : public ScEventListener {

public:

virtual void handleEventScOverrun(ScHandle hndl);

};

cMyEvent* ep = new cMyEvent();

ScAddEventListener(hndl, ep);

ScRemoveEventListener
Description:

Delete the event listener
Syntax:

[C++]	 ScResult ScRemoveEventListener(ScHandle hndl, ScEventListener* listener);
Parameters:

[IN] hndl	 Instrument handle
[IN] listener	 Pointer to the event listener class

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Deletes a registered event listener.

Note:
An error will occur if you specify an event listener that has not been added.
This cannot be used with the .NET version (C#).

3.3 Detailed API Specifications

3-21IM D033-01EN

ScAddCallback
Description:

Add a call back method (C# only)
Syntax:

[C#]	 public delegate void ScCallback(int hndl, int type)
	 int ScAddCallback(int hndl, ScCallback func, int type)

Parameters:
[IN] hndl	 Instrument handle
[IN] func	 Callback method
[IN] type	 Event type

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Adds a callback method that is called when events occur.
The overrun event in free run mode can be registered.
The event type will be SC_EVENTTYPE_OVERRUN.

Note:
The overrun event is valid when the connection type is not 10GEther.
This cannot be used with C++.

Example:
private void overrunCallback(int hndl, int type)

{

....

}

if (api.ScAddCallback(hndl, overrunCallback, SC_EVENTTYPE_

OVERRUN) != ScAPI.SC_SUCCESS)

{

// error

}

ScRemoveCallback
Description:

Delete the call back method (C# only)
Syntax:

[C#]	 int ScRemoveCallback(int hndl, ScCallback func)
Parameters:

[IN] hnd	 Instrument handle
[IN] func	 Callback method

Return value:
SC_SUCCESS	 Success
SC_ERROR	 Error

Detail:
Deletes the call back method.

Note:
This cannot be used with C++.

3.3 Detailed API Specifications

3-22

3.4	 DLL Linking Method

For C++, only implicit linking is currently assumed for DLL linking.
To use the API through implicit linking, specify and link to the import library (.lib file), and
call the API in the same manner as calling normal functions.

In addition, place the following DLLs in the same folder as the application (exe) that you
create.

Project C++ (unmanaged application) C# (managed application)
Architecture 32bit 64bit 32bit 64bit Any CPU

DL950ACQAPI.dll Y Y Y
DL950ACQAPI64.dll Y Y Y
DL950ACQAPINet.dll Y Y Y
tmctl.dll Y Y Y
tmctl64.dll Y Y Y

4-1IM D033-01EN

Chapter 4	 Appendix

4.1	 About Free Run Mode

Free run mode using this API and DL950 works as follows.

The DL950 starts acquiring waveforms when it receives an acquisition start (ScStart)
command. It continues to acquire waveforms until it receives an acquisition stop (ScStop)
command. Waveform data is temporarily stored in the instrument’s acquisition memory.
While the waveform acquisition is in progress, execute latches (ScLatchData) and
waveform acquisitions (ScGetLatchRawData) through the API. Waveform data between
latches can be retrieved.
In a single latch, the waveform data of all channels is sent from the DL950 to the API.
Therefore, you need to be careful about the buffer size used by the API.

ScGetLatchRawData(1)

ScStart ScLatchData(1)

Latch(1) range

Time axis direction

Latch(2) range

Latch(3) range

ScLatchData(2) ScLatchData(3)

ScGetLatchRawData(2) ScGetLatchRawData(3)

4-2

4.1 About Free Run Measurements

Sampling Rate, Wire Type, and Connection Mode
The available sampling rates vary depending on the type of connection used between
the DL950 and the API.

10G high-speed transmission
Set the write type to Hislip (SC_WIRE_HISLIP) when establishing a connection. In this
case, the DL950 can acquire using up to 10 MS/s × 16 channels.

Other types
If the connection is not 10G Hislip, the DL950 can acquire using up to 200 kS/s × 16
channels.

If the acquisition sampling rate is fast and the interval between data retrievals is long,
waveform data in the DL950 memory may be overwritten.

Required memory size
When data is retrieved in free run mode, the waveform data of all channels is received
in the data format described in “ScGetLatchRawData Data Structure” in section 4.1. The
required memory size must be calculated using the following parameters and set with the
ScGetLatchRawData command.
•	 Number of channels in use
•	 Sampling rate
•	 Latch interval

For example, if waveform acquisition in free run mode is executed at 200 kS/s on 16
channels (voltage module), 6400000 bytes (= 400000 bytes × 16 channels) of space are
required every second.
Further, 32 bytes of space are required to store header information of each acquisition
channel.
Thus, a total of 6400512 bytes (= 6400000 bytes + 32 bytes × 16 channels) of space is
required every second.

4-3IM D033-01EN

4.1 About Free Run Measurements

ScGetLatchRawData Data Structure
In free run mode, the data received from the DL950 contains the data of all channels.
The data format is shown below. The data of each acquisition channel is concatenated in
the following format. All data is in Little Endian format.

1 Channel number (4 bytes) 0 to 311

2 Sub channel number (4 bytes) 0 to 631, 2

3 Reserved (8 bytes)
4 Time of the first data value (8 bytes) Unix Time (4Byte) +

Tick (4 bytes, in nanoseconds (0 to 999999999))4

5 Data size (8 bytes) 0 or more
The data size is equal to the number of ACQ data
points converted into number of bytes.3

6 ACQ data You can verify the data size of an ACQ point using
ScGetChannelBits.3

1	 Both channel numbers and sub channel numbers start at zero. (Acquisition channel CH1 is ‘0’
and RMath1 is ‘16’.)

2	 For 720240, 720241, 720242, and 720243, the number is not the sub channel number but
the number of valid sub channels.

	 For example, if sub channels 1 and 3 are enabled and sub channel 2 is disabled, sub
channel 1 is ‘0’ and sub channel 3 is ‘1’.

3	 For normal modules, a single data point is 2 bytes. If 17 bits or more bytes are set on CAN,
for example, a single data point is 4 bytes. For RMath channels, a single data point is 4
bytes because the data is in floating point format. For sub channels of power math and
harmonic math functions, a single data point is 4 bytes because the data is in floating point
format. For GPS sub channels, a single data point is 4 bytes because the data is in 32-bit
integer format.

	 For time information channels of power math, harmonic math, and GPS functions, a single
data point is 8 bytes.

4	 When a measurement is performed in external sampling mode, the value of this area is
undefined.

Notes for when acquiring at multiple sample rates or low sample rates
If waveform acquistion is performed at multiple sample rates or low sample rate in free
run mode, the data size is adjusted so that the number of data points retrieved during the
waveform acquisition is fixed to a given number (integral multiple of 16). If the number
becomes zero as a result of adjustment, the data of the current latch is included in the
data retrieved in the next latch.

Data in timestamp format
If power analysis, harmonic analysis, or GPS position information is enabled on the
analysis menu, the data for these channels will be stored in timestamp format. Data in
timestamp format is always stored in pairs consisting of the computed result of each item
and the time information of the computation. All data is in Little Endian format.

Power analysis Harmonic analysis GPS position
information

Channel RMath13 RMath14 RMath15 RMath16 RMath1
Item’s sub channel 1 to 62 1 to 62 1 to 6

32-bit floating-point type 32-bit floating-point type 32-bit integer
type

Time information sub channel 63 63 7
64-bit time format (see below)

Time information sub channels are recorded in the following format.
4-byte data Unix Time (with 1970/1/1 as 0)
4-byte data Tick (4 bytes, in nanoseconds (0 to 999999999))

If the waveform acquisition is performed using external sampling, the sample count, not
the time information, is saved.

8-byte data
Sample count (64-bit counter with the first data value set to 0)
4-byte data Sample count (upper 4 bytes)
4-byte data Sample count (lower 4 bytes)

* The sample count is not a simple 64-bit integer value, but is a value divided into upper and
lower bytes. Each value is in Little Endian format.

4.1 About Free Run Measurements

nbn @ nbn. at | www. nbn. atTel. +43 316 40 28 05 | Fax +43 316 40 25 06 Riesstraße 146, 8010 Graz
nbn Austria GmbH

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.

	Notes on Usage
	Software License Agreement
	Contents
	Chapter 1	Software Overview
	1.1	Software Overview

	Chapter 2	Acquisition API Overview
	2.1	API Overview
	2.2	API Overview
	Initialization and termination
	Connection and disconnection
	Getting or setting waveform acquisition conditions
	Getting waveform data
	Converting waveform data
	Event listener and callback functions

	2.3	Basic Flow of How to Use the API
	Unmanaged application (free run mode)
	Managed application (free run mode)

	Chapter 3	API Functional Specifications
	3.1	Definition of Class
	Class ScEventListener

	3.2	Definition of Constants
	SC_SUCCESS
	SC_ERROR
	SC_WIRE_USBTMC
	SC_WIRE_VISAUSB
	SC_WIRE_VXI11
	SC_WIRE_HISLIP
	SC_FREERUN
	SC_EVENTTYPE_OVERRUN

	3.3	Detailed API Specifications
	ScInit
	ScExit
	ScOpenInstrument
	ScCloseInstrument
	ScSetControl
	ScGetControl
	ScGetBinaryData
	ScQueryMessage
	ScSet10GMode
	ScGet10GMode
	ScStart
	ScStop
	ScLatchData
	ScGetLatchRawData
	ScGetChAcqData
	ScSetSamplingRate
	ScGetSamplingRate
	ScGetChannelSamplingRate
	ScGetChannelBits
	ScGetChannelGain
	ScGetChannelOffset
	ScGetChannelType
	ScAddEventListener
	ScRemoveEventListener
	ScAddCallback
	ScRemoveCallback

	3.4	DLL Linking Method

	Chapter 4	Appendix
	4.1	About Free Run Mode
	Sampling Rate, Wire Type, and Connection Mode
	Required memory size
	ScGetLatchRawData Data Structure
	Notes for when acquiring at multiple sample rates or low sample rates
	Data in timestamp format

