

Specifications

PX8000
Precision Power Scope

Specifications of PX8000, 760811, 760812, 760813 and 760851

Item	Specification
Shape	Plug-in Input module Style
Module structure	Voltage module, Current module and Auxiliary (AUX) module Power measurement element: each one Voltage module and one Current module Maximum 8 modules (maximum 4 power measurement elements) can be installed AUX module can be installed maximum 3 (at least one power measurement element must be installed).
Maximum channel number	8 ch , combination of Voltage/Current modules and AUX module
Maximum record length	Standard 10 M points for each voltage and current regardless of the installed number of modules.
	The memory cannot be combined, each memory of module is individual.
	50 M points for each voltage and current regardless of the installed number of input modules when /M1 option is installed.
	100 M points for each voltage and current regardless of the installed number of input modules when / M 2 option is installed.
Voltage/Current input modules (760811/760812) Specifications	
Item	Specification
Input terminal type	Voltage: Plug-in terminal (Female)
	Current: Direct input: Plug-in terminal (male)
	External current sensor input: isolated BNC (760812)
Input format	Voltage: Floating input, resistive voltage divider
	Current: Floating input through shunt
Measurement range	Voltage: 1.5/3/6/10/15/30/60/100/150/300/600/1000 Vrms (crest factor=2 at rated range input)
	Current: Direct input (5 A) $10 \mathrm{~m} / 20 \mathrm{~m} / 50 \mathrm{~m} / 100 \mathrm{~m} / 200 \mathrm{~m} / 500 \mathrm{~m} / 1 / 2 / 5$ Arms (Crest factor=2 at rated range input)
	Current: External current sensor input (760812) $50 \mathrm{~m} / 100 \mathrm{~m} / 200 \mathrm{~m} / 500 \mathrm{~m} / 1 / 2 / 5 / 10 \mathrm{Vrms}$ (Crest factor=2 at rated range input)
Input impedance	Voltage: Input resistance : Approx. 2 M Ohm Input capacitance: Approx. 10 pF
	Current: - Direct input: 5 A input element: approx. $100 \mathrm{~m} \mathrm{Ohm}+$ approx. 0.19 uH - External current sensor input: approx. $1 \mathrm{M} \mathrm{Ohm}+$ approx. 17 pF (760812)
Instantaneous maximum allowable input (less than 20 ms)	Voltage: peak value of 2.2 kV or 1.5 kVrms , whichever is less.
	Current: - Direct input (5 A input element): peak value of 30 A or rms value of 15 A , whichever is less - External current sensor input (760812): peak value less than or equal to 10 times the range (1 M Ohm)
Instantaneous maximum allowable input (less than 1 s) Instantaneous	Current: - Direct input (5 A input element): peak value of 8.5 A or rms value of 6 A , whichever is less. - External current sensor input (760812): peak value less than or equal to 10 times the range (1 M Ohm)
Continuous maximum allowable input	Voltage: peak value of 2 kV or 1.1 kV rms , whichever is less. If input frequency is higher than 100 kHz : less than (1100 - f) Vrms, f is the frequency in kHz However, continuous maximum allowable input voltage is bigger than 3 V rms.
	Current: - Direct input (5 A input element): peak value of 8.5 A or rms value of 6 A , whichever is less. - External current sensor input (760812): peak value less than or equal to 4 times the range (1 M Ohm)
Continuous maximum common mode voltage Safety Note:	Maximum allowable voltage that can be measured Voltage input terminals: 1000 Vrms Current input terminals: 1000 Vrms Rated voltage of EN61010-2-030 standard: 600 Vrms External current sensor input connector: 600 Vrms Do not touch the inside of the BNC connector of the External Current Sensor input for safety reasons. Current Module (760813) 1000 V CAT II: Rated voltage of EN61010-2-030
Rated voltage to ground	Maximum allowable voltage that can be measured Voltage input terminals: 1000 V Current input terminals: 1000 V Rated voltage of EN61010-2-030 standard: 600 V External current sensor input connector: 600 V Do not touch the inside of the BNC connector of the External Current Sensor input for safety reasons.
CMRR (Influence from common mode voltage)	When 1000 Vrms is applied between the input terminal and case with the voltage input terminals shorted, the current input terminals open, and the external current sensor input terminals shorted. - $50 / 60 \mathrm{~Hz}: \pm(0.01 \%$ of range $+5 \mathrm{mV})$ or less. - Reference value for up to 100 kHz : $\pm\{($ maximum rated range $) /($ rated range $) \times 0.001 \times f+0.001 \times f) \%$ of range +5 mV \} or less 0.01% or greater. The unit of f is kHz . The maximum rated range in the equation is 1000 V .
	When 1000 Vrms is applied between the input terminal and case with the current input terminals open, and the external current sensor input terminals shorted. - $50 / 60 \mathrm{~Hz}$: Direct input $\pm(0.01 \%$ of range $+10 \mu \mathrm{~A})$ or less. Sensor input $\pm(0.01 \%$ of range $+25 \mu \mathrm{~V}$) or less (760812) - Reference value for up to 100 kHz : $\pm\left\{(\right.$ maximum rated range $) /($ rated range $) \times 0.002 \times f \times 2^{\wedge}(0.5+f / 1000) \%+$ $0.002 \times$ f of range $+10 \mu \mathrm{~A}$) or less For external current sensor input, add maximum rated range/rated range \times $\left\{0.003 \times f \times 2^{\wedge}(0.5+f / 5000)+0.003 \times f\right.$ of range $\left.+25 \mu \mathrm{~V}\right\}$ to the value above. 0.01% or greater. The unit of f is kHz . The maximum rated range in the equation is 5 A , or 10 V .
Line filter	Select from OFF, $500 \mathrm{~Hz}, 2 \mathrm{kHz}, 20 \mathrm{kHz}$, and 1 MHz .
Frequency filter	Select from OFF, $100 \mathrm{~Hz}, 500 \mathrm{~Hz}, 2 \mathrm{kHz}$ and 20 kHz .
A/D converter	Resolution: 12 bit Conversion ratio (sampling period): Approx. 10 ns. For harmonic measurement, please refer to harmonic function.
Maximum sample rate	$100 \mathrm{MS} / \mathrm{s}$
Range change	You can set it each module individually.

Auto ranging function	Range up - When input rms level is more than 110% of the range or the peak is more than 200%.
Range down - When input rms level is lower than 30% of the range rating and peak is less than below range 180% of the range rating of the lower range.	

Auxiliary (AUX) module (760851) Specification

Item Specification

Item	Specification
Effective measurement range	20 div, two times of measurement range

Number of input channels 2, switchable analog or pulse input

Input coupling	AC, DC, or GND
Input connector	Isolated BNC
Input format	Isolated unbalanced

Frequency characteristics $\quad \mathrm{DC}$ to $20 \mathrm{MHz}(-3 \mathrm{~dB}$ point when sine wave of amplitude ± 3 div is applied) Voltage-axis sensitivity setting 50 mV to 100 V ($1-2.5-5$ steps) (when using 1:1 probe attenuation)

Input impedance $1 \mathrm{M} \mathrm{Ohm}, \pm 1 \%$ Approx. 35 pF

-3 dB point when AC coupled 10 Hz or less (1 Hz or less when using the $700929,0.1 \mathrm{~Hz}$ or less when low frequency attenuation point using the 701947)
Maximum input voltage Combined with the 700929 (10:1) or 701947 (100:1):
(at 1 kHz or less) $\quad 1000 \mathrm{~V}$ (DC+ACpeak) CAT II
Direct input or cable not complying with the safety standard:
200 V (DC+ACpeak)
Maximum allowable common Working voltage of safety standard
mode voltage Combined with the 700929 (10:1) or 701947 (100:1):2
(at 1 kHz or less) $\quad 1000 \mathrm{Vrms}$ (CAT II)
Direct input or cable not complying with the safety standard:
42 V (DC +ACpeak) (0 and CAT II, 30 V rms)
Influence of common mode $\quad-80 \mathrm{~dB}$ at $50 / 60 \mathrm{~Hz}$ (with input terminal shorten and $1000 \mathrm{Vrms}(50 / 60 \mathrm{~Hz}$) voltage (CMRR) \quad applies between input and case)
Bandwidth limit Select from Full, $2 \mathrm{MHz}, 1.28 \mathrm{MHz}, 640 \mathrm{kHz}, 320 \mathrm{kHz}, 160 \mathrm{kHz}, 80 \mathrm{kHz}$, $40 \mathrm{kHz}, 20 \mathrm{kHz}$, and 10 kHz
Cut-off characteristics: $-18 \mathrm{~dB} / \mathrm{OCT}$ (when 2 MHz , Typical
Probe attenuation setting Voltage probe: 1:1, 10:1, 100:1, 1000:1
Auto ranging function Range up
When one of following conditions is satisfied, range is changed to higher - DC input level is more than 110% of selected range rating

Input peak level is more than 200% of selected range rating
(when motor mode is OFF)

- Input peak level is more than 145% of selected range rating (when motor mode is ON)
Range down
When following all conditions are satisfied, range is changed to lower
DC input level is less than 30% of selected range rating
Input peak level is less than 180% of less range rating
(when motor mode is OFF)
input peak level is less than 140% of less range rating
A/D conversion resolution $\quad 12 \mathrm{~b}$
Withstand voltage $\quad 1500$ Vrms for 1 minute (across each terminal and earth) (60 Insulation resistance $\quad 500 \mathrm{VDC}, 10 \mathrm{M} \mathrm{Ohm}$ or more (across each input terminal and earth)
Accuracy (analog) DC: $\pm 1 \%$ of range (typical)
Measured under the standard operating conditions. See page. 5, Accuracy
Temperature coefficient (analog) $\pm\left(0.1\right.$ of range $/{ }^{\circ} \mathrm{C}$) (typical)
Amplitude Input range (analog) $\pm 110 \%$ of range rated
Amplitude input range (pulse) $\pm 5 \mathrm{~V}$ peak
Frequency measurement $\quad 2 \mathrm{~Hz}$ to 1 MHz
range (pulse)
Judged input amplitude (pulse) H level: -9.9 V to +10.0 V , L level: -10.0 V to +9.9 V
Input waveform (pulse) $\quad 50 \%$ duty cycle square wave
Pulse width (pulse) $\quad 500 \mathrm{~ns}$ or wider
Accuracy (pulse)
500 ns or wider
Accuracy (pulse) $\pm(0.05 \%$ of reading) ± 1 count error (10 ns), Except, the observation time is greater than or equal to 300 times the period of the pulse.

Item	Specification
Trigger mode	Auto, Auto Level, Normal, Single, N Single, or On Start
Selectable trigger level range	± 5 div of center 0 div; when trigger source is set to voltage, current or power of a power measurement element. ± 10 div of center 0 div; when trigger source is set to AUX module voltage input.
Trigger hysteresis	Select from ± 0.1 div, ± 0.5 div, ± 1 div
Selectable trigger position range	0 to 100\% (of the display record length; resolution: 0.1\%)
Selectable trigger delay range	0 to 10 s (resolution: 10 ns)
Selectable hold-off time range	0 to 10 s (resolution: 10 ns)
Manual trigger key	A dedicated manual trigger key can be used.
Simple Trigger	
Trigger source	Un, In, Pn, AUXn, EXT, or Time n=channel number (not when pulse input is selected)
Trigger slope	Rising, falling or rising or falling
Time Trigger	Date (year, month, and day), time (hour and minute), and time interval (10 seconds to 24 hours)

Enhanced trigger
Trigger source Un, In, Pn, AUXn or EXT (not when pulse input is selected)

Specifications of PX8000, 760811, 760812, 760813 and 760851

Trigger type	$\mathrm{A} \rightarrow \mathrm{B}(\mathrm{N}):$	After the trigger A conditions are met, the PX8000 triggers when the trigger B conditions are met N times. Count: 1 to 1000 Condition A: Enter/Exit Condition B: Enter/Exit		Vector Bar Graph Display (option)								
				Vector display	Display the phase angle between the fundamental voltage signal and fundamental current signal as a vector							
				Bar graph display	Display a bar graph of the amplitude of each harmonics when it is harmonic measurement.							
	$\overline{\text { A Delay B: }}$	After the specified amount of time elapses after the trigger A conditions are met, the PX8000 triggers when the trigger B conditions are first met. Time: 0 to 10 s (resolution: 10 ns) Condition A: Enter/Exit Condition B: Enter/Exit			Zoom Display							
				Zoom	Expand the displayed waveform along with the time axis (up to 2 separate locations). The zoom position can be automatically scrolled.							
	Edge on A :	While the trigger A conditions are met, the period triggers on the OR of multiple trigger source edges.		$\frac{\text { FFT Display }}{\text { FFT }}$	Power spectrum of input	t waveform, Maxi	mum two windo					
	AND:	The PX8000 triggers on the AND of multiple state conditions.		X-Y display								
	OR:	The PX8000 triggers on the OR of multiple trigger source edges or states (or Window triggers)		$X-Y$ Display	The X and Y axes can be selected from Un/ln/Pn/AUXn, MATHn, (Maximum four traces, two windows).							
	Pulse Width:	$B<$ Time:	The PX8000 triggers when the time from when the trigger B conditions are met to when they change from being met to not being met is greater than the specified time. Time: 20 ns to 10 s (resolution: 10 ns)	Functionalities Measurement Function and Conditions								
				Crest Factor	Up to 200 (effective minimum input). Up to 2 (at the rated range input) CfU: Voltage crest factor, Cfl: Current crest factor							
		B>Time:	The PX8000 triggers when the time from when the trigger B conditions are met to when they change from being met to not being met is less than the specified time. Time: 20 ns to 10 s (resolution: 10 ns)	Measurement period	Measurement period to calculate numerical values - Period of measurement update cycle based on zero crossing or external gate signal source signal - 8192 points for harmonic measurement from specified start cursor							
		B Time O	: The PX8000 triggers when the trigger B conditions continue to be met for the specified period of time.	Wiring method	1P2W (Single phase 2 wire), 1P3W (Single phase 3 wire), 3P3W (3 phase 3 wire), 3V3A (3 phase 3 wire, 3 power meter method), 3P4W (3 phase 4 wire) It depends on the quantify and type of the installed modules.							
			Time: 20 ns to 10 s (resolution: 10 ns)	Scaling	0.0001 to 99999.9999 can be set for scaling of VT ratio, CT ratio and power ratio when external current sensor, VT or CT are used for the input Linear scaling function is available for AUX module (760851).							
		B Betwee	The PX8000 triggers when the period during which the trigger B conditions continue to be met is within the specified time range. Time: T1: 10 ns to 9.99999999 s T2: 20 ns to 10 s (resolution: 10 ns)									
				Averaging of numeric value	Normal measurement items, Using one of the following methods perform averaging on the normal measurement items; - Urms, Umn, Udc, Urmn, Uac, Irms, Imn, Idc, Irmn, Iac, P, S, Q - Power factor Lambda, Phase angle Phi, Crest Factor CfU/Cfl, Corrected Power Pc, Efficiency Eta 1to Eta 4 are determined from the averaged Urms, Irms, P, S, and Q - Select either exponential averages or moving averages - Exponential average: Select the attenuation constant from a value between 2 to 64 (Harmonic measurement items, $\mathrm{U}(\mathrm{k}), \mathrm{I}(\mathrm{k}), \mathrm{P}(\mathrm{k}), \mathrm{S}(\mathrm{k})$, and $\mathrm{Q}(\mathrm{k})$ Power factor Lambda(k), Phase angle Phi(k) are determined from the averaged $P(k)$ and $Q(k)$). - Moving average: Select the average count from a value between 8 and 64 - Parameters of Z, Rs, Xs, Rp, Xp, Uhdf, Ihdf, Phdf, Uthd, Ithd, Pthd, Uthf, Ithf, Utif, Itif, hvf, hcf, and K-factor are determined from the averaged $U(k), I(k)$, and $P(k)$ - Only Exponential averaging is available for harmonic measurement items Select the attenuation constant from a value between 2 to 64 .							
	Period:	The PX8000 triggers when the period during which the trigger B conditions continue to be met is within the specified time range.										
		T>Time:	The PX8000 triggers when the period of the trigger T conditions is longer than the specified time. Time: 20 ns to 10 s (resolution: 10 ns)									
		T<Time:	The PX8000 triggers when the period of the trigger T conditions is shorter than the specified time. Time: 20 ns to 10 s (resolution: 10 ns)									
		T1<T<T2:	The PX8000 triggers when the period of the trigger T conditions is within the specified time range. Time T1; 20 ns to 10 s (resolution: 10 ns) T2; 30 ns to 10 s (resolution: 10 ns)									
				Zero level compensation /Null	Zero level can be compensated individually by module Following range can be compensated. Power element: Voltage/Current $\pm 14 \%$ of range AUX module: Analog input $\pm 60 \%$ of range: Pulse input							
		T<T1, T<T2	The PX8000 triggers when the period of the trigger T conditions is within the specified time range. Time T1; 20 ns to 10 s (resolution: 10 ns) T2; 30 ns to 10 s (resolution: 10 ns)	Frequency measurement	AUX module: Analog input	put $\pm 60 \%$ of rang	e: Pulse input					
				Item	Specification							
	Wave Window:	The PX8000 triggers when the period of the trigger T conditions is within the specified time range.		Measurement Item	Normal measurement item; Voltage or current frequencies of all power measurement elements can be measured							
	- The trigger A and B conditions can be set to High, Low, or Don't Care for each channel. The AND of the conditions (the parallel pattern) is used to determine the result. - For OR and AND, the condition can be set to High, Low, IN, OUT, or Don't Care for each channel.			Measurement method	Reciprocal method							
				Measurement range Maximum frequency	10 Hz to 5 MHz , input amplitude is more than 30% of range							
				5.0000 MHz								
	Time Base					$\pm(0.1 \%$ of reading) Conditions; - Time/div setting is more than $50 \mu \mathrm{~S}$ - At least 5 cycles input should be measured. - "Sampling frequency setting/input frequency" is more than 2.5 -20 kHz frequency filer should be ON when input frequency is lower than 20 kHz . -2 kHz frequency filer should be ON when input frequency is lower than 2 kHz . -500 Hz frequency filer should be ON when input frequency is lower than 500 Hz . -100 Hz frequency filer should be ON when input frequency is lower than 100 Hz .						
Item	Specificatio											
Time axis setting "Time/div"	Time/div setting: $100 \mathrm{~ns} /$ div to $1 \mathrm{~s} /$ div (1-2-5 step), $2 \mathrm{~s} / \mathrm{div}, 3 \mathrm{~s} / \mathrm{div}, 4 \mathrm{~s} / \mathrm{div}$, $5 \mathrm{~s} / \mathrm{div}, 6 \mathrm{~s} / \mathrm{div}, 8 \mathrm{~s} / \mathrm{div}, 10 \mathrm{~s} / \mathrm{div}, 20 \mathrm{~s} / \mathrm{div}, 30 \mathrm{~s} / \mathrm{div}, 1 \mathrm{~min} / \mathrm{div}$ and $2 \mathrm{~min} / \mathrm{div}$											
Accuracy of time scale	$\pm 0.005 \%$											
External Clock	Connector style BNC Input level TTL level Effective edge Rising edge Frequency bandwidth Maximum 9.5 MHz , Mimi. pulse width Longer than 50 ns for both High/Low level											
Display				Number of displayed digits Frequency Measurement filter	Full 5 digits (99999)							
Item	Specification				Select of OFF/100 Hz/500 Hz/2 kHz/20 kHz							
Display	10.4 inch TFT LCD display			Harmonics measurement								
Number of dots	1024×768 XGA			Item	Specification							
Waveform displaying dot size	801×656 (Waveform Display)			Measurement items	All installed Power measurement elements							
Displaying format	Combination: Maximum 2 types of format can be displayed			Method	PLL synchronization method (not available for external sampling clock function)							
	Numeric 4 ite Custom Wave $1 / 2 / 3$ Bar Single/D Vector Single	/4/6/8/12/16 ual/Triad e/Dual	/ 16 items/Matrix/All/Single List/Dual List/	Frequency range	The range for the fundamental frequency of the PLL source is 20 Hz to 6.4 kHz , and sampling frequency is more than $2 \mathrm{MS} / \mathrm{s}$. Time/div is longer than 2 m seconds/div and Acquisition Time Base is set to "Int".							
	ZOOM1 and FFT1 and FF XY1 and XY2	ZOOM2 (div T2 (divided 2 (divided lo	vided lower display area) lower display area) wer display area)	PLL source	The range of the fundamental frequency of the PLL source is 20 Hz to 409.6 kHz , or 20 Hz to 6.4 kHz when the PLL source is EXT TRIG IN input. Sampling frequency is higher than $2 \mathrm{MS} / \mathrm{s}$. Time/div is longer than 100μ seconds/div and Acquisition Time Base is set to "Int".							
Display update	Depends on setting of observation time and record length											
Numerical Display	0.002\% of the LC	CD screen may	be defective.	FFT data length	8192, the analysis (calculation) start point can be set freely in the acquisition memory data. The length of the acquisition data must be twice that of the window.							
Maximum digit of numeric display	Selected full 5 digits (displaying 99999), or 6 digits (999999)			Window function	Rectangular							
Number of displayed items	Select from 4, 8, 16, Matrix, All, Single List, Dual List, and Custom			Anti-aliasing filter FFT Sample rate, window width and upper limits of harmonic analysis	Set as Line filter							
Waveform Display					Fundamental freq. FF	FFT Sample rate	Window width					
Displaying items	Maximum 16 waveforms Voltage, current and power of Element 1 Voltage, current and power of Element 2 (or AUX3 and AUX4 of Element 2) Voltage, current and power of Element 3 (or AUX5 and AUX6 of Element 3) Voltage, current and power of Element 4 (or AUX7 and AUX8 of Element 4) MATH 1 to MATH 8											

Specifications of PX8000, 760811, 760812, 760813 and 760851

Minimum sample rate	Fundamental frequency Minimum Sample rate $20 \mathrm{~Hz} \leq \mathrm{f} \leq 6.4 \mathrm{kHz}$ $2 \mathrm{MS} / \mathrm{S}$ $6.4 \mathrm{kHz}<\mathrm{f} \leq 12.8 \mathrm{kHz}$ $5 \mathrm{MS} / \mathrm{S}$ $12.8 \mathrm{kHz}<\mathrm{f} \leq 25.6 \mathrm{kHz}$ $5 \mathrm{MS} / \mathrm{S}$ $25 \mathrm{kHz} \leq \mathrm{f} \leq 51.2 \mathrm{kHz}$ $10 \mathrm{MS} / \mathrm{S}$ $51.2 \mathrm{kHz}<\mathrm{f} \leq 102.4 \mathrm{kHz}$ $20 \mathrm{MS} / \mathrm{S}$ $102.4 \mathrm{kHz}<\mathrm{f} \leq 204.8 \mathrm{kHz}$ $50 \mathrm{MS} / \mathrm{S}$ $204.8 \mathrm{kHz}<\mathrm{f} \leq 409.6 \mathrm{kHz}$ $100 \mathrm{MS} / \mathrm{S}$ When PLL source is EXT TRIG IN fundamental frequency should be lower than 6.4 k
Harmonic Accuracy	Conditions; PLL source signal is sine wave and DC component is stable PF=1. Accuracy range of voltage/current and frequency is same as normal measurement Accuracy range. Line filter OFF Add below expression/value to normal measurement accuracy Voltage \& current: $(0.001 \times f+0.001 \times n) \%$ of reading $+0.1 \%$ of range Power: $(0.002 \times f+0.002 \times n) \%$ of reading $+0.2 \%$ of range n : order, f : frequency of the $\mathrm{n}^{\text {th }}$ order When it is voltage input, following values are added. When voltage range is set to 1.5 V to 10 V Voltage: 1.5 mV Power: ($1.5 \mathrm{mV} /$ voltage rated range) $\times 100 \%$ of range When voltage range is set to 15 V to 100 V Voltage: 15 mV Power: ($15 \mathrm{mV} /$ voltage rated range) $\times 100 \%$ of range When it is direct current input, following values are added. Current: $50 \mu \mathrm{~A}$ Power: $(50 \mu \mathrm{~A} /$ sensor current rated range $) \times 100 \%$ of range When sensor current range is set to 50 mV to 500 mV , following values are added. Current: $100 \mu \mathrm{~V}$ Power: ($100 \mu \mathrm{~V} /$ sensor current rated range $) \times 100 \%$ of range When input frequency is over 100 kHz , following values are added. Voltage \& current : 0.3% of reading Power: 0.6% of reading When input is $\mathrm{n}^{\text {th }}$ component input, add $(\{\mathrm{n} /(\mathrm{m}+1)\} / 50) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $(n+m)^{\text {th }}$ order and $(n-m)^{\text {th }}$ order of the voltage and current. And add $(\{\mathrm{n} /(\mathrm{m}+1)\} / 25) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $(n+m)^{\text {th }}$ order and $(n-m)^{\text {th }}$ order of the power. When the frequency of the PLL source is less than 40 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add following values. Voltage \& current: $(0.003 \times n) \%$ of reading Power: $(0,006 \times n) \%$ of reading When Line filter is ON, add influence of Line filter to accuracy of Line filter OFF. Power accuracy of over 6.5 kHz is designed Values.

Item	Specification
Acquisition mode	Normal: Normal waveform data acquisition Envelop: The peak values are held at the maximum sample rate regardless of the Time/div setting. Averaging: The number of times to average can be set to 2 to 65536 in 2^{n} steps.
Record length	Selection of $100 \mathrm{kpoint} / 250 \mathrm{kpoint} / 500 \mathrm{kpoint} / 1$ Mpoint/ 2.5 Mpoint/ 5 Mpoint/10 Mpoint/25 Mpoint (when/M1 or /M2 installed)/50 Mpoint (when /M1 or /M2 installed)/100 Mpoint (when /M2 installed)
Zoom	Expand the displayed waveform along time axis (up to 2 separate locations). The zoom position can be automatically scrolled.
Display format	1/2/3/4/6/8/12, and 16 analog waveform windows
Display interpolation	Sampled points can be displayed through the use of dots (OFF), sine interpolation, linear interpolation or pulse interpolation.
Graticule	Select of three types of graficule
Auxiliary display ON/OFF	Scale values, waveform labels, the extra window, the level indicator, and the numeric display can be turned ON and OFF.
X-Y Display	The X and Y axes can be selected from Un/In/Pn/AUXn, MATHn (Maximum four traces, two windows).
Snapshot	The currently displayed waveforms can be retained on the screen. The Snapshot waveforms can be saved and loaded.
Clear trace	The displayed waveform can be cleared.
History	Maximum 1000 waveforms, depending on record length Arbitrary one waveform, all waveform or averaged waveform can be displayed.

Item	Specification
Channel ON/OFF	Un, In, Pn, AUXn or MATHn can be turned ON and OFF separately
ALL CH menu	The setting of the all channels while waveforms are displayed. A USB keyboard or mouse
Vertical axis zooming	$\times 0.1$ to $\times 100$ Upper and lower limits can be used to set the scale.
Vertical position setting	Waveform can be moved in the range of ± 5 divs from the center of the waveform display frame.
Scaling	O.0001 to 99999..9999 can be set for scaling of VT ratio, CT ratio and power ratio when external current sensor, VT or CT are used for the input.
Linear scaling	The linear scaling mode can be set separately for each channels (CHn). It can be set to AX+B or P1-P2 for AUX modules. Only when motor measurement is off for an AUX module.
Roll mode is enabled automatically when the trigger mode is set to Auto, Auto Level, Single, or On Start, and the time axis setting is greater than or equal to 100 ms/div.	

Analysis Functions
$\xrightarrow{\text { Item }}$ Power parameters calculation Specification
Power parameters calculation Calculate Voltage, Current. Power, Delta parameters, frequency and AUX values from captured waveform
Apparent power reactive power and power factor and those Sigma value are calculated from the Voltage, Current and Power values
Zooming and Searching Can search for and then expand and display a portion of the displayed waveform
Can choose from the following search methods
Edge: Searches for rising or falling edges
History search feature

Can search through history waveforms for specified conditions Zone search: Displays waveforms that pass through or do not pass through a specified area on the screen.
Parameters search: Displays a waveform when the result of the automated measurement of its parameters meet the specified conditions

Cursor measurement	Horizontal, Vertical, H\&V, Degree (
Cursor measurement (Harmonic measurement)	Re-calculate harmonic parameters using 8192 points data from point of start cursor according to the input frequency
Automated measurement of waveform parameters	Automated measurement of waveform parameters Up to 24 items can be displayed P-P, Amp, Max, Min, High, Low, Avg, Mid, Rms, Sdev, +OvrShoot, -OvrShoot, Rise, Fall, Freq, Period, +Width, -Width, Duty, Pulse, Burst1, Burst2, AvgFreq, AvgPeriod, Int1TY, Int2TY, Int1XY, Int2XY, Int1hXY (IntegPower/IntegCurrent) Int2hXY (IntegPower/IntegCurrent)
Statistical processing	Application items: Automated measurement values of waveform parameters Statistical items: Max, Min, Avg, Sdv, and Cnt Maximum number of cycles: 64000 cycles (when the number of parameters is 1) Maximum total number of parameters: 64000 Maximum measurement range: 100 M points
Normal statistical processing	Statistical processing is performed while waveforms are acquired.
Cyclic statistical processing	Automatically measures the waveform parameters of the data in the acquisition memory and performs statistical processing on the parameters once per cycle period.
Statistical processing of the history data	Automatically measures the waveform parameters of each history waveform and performs statistical processing on the parameters.
User defined computation (MATH)	Maximum 8 expressions for waveforms MATH1 to MATH8, Maximum 4 M points of total, Regarding Digital filter function, please refer to waveform calculation (digital filter) Expressions can be created through the combination of the following operations and constants for waveforms. $+,-,{ }^{*}, /$, SHIFT, ABS, SQRT, LOG, EXP, NEG, SIN, COS, TAN, ATAN, PH, DIF, DDIF, INTG, IINTG, BIN, SQR, CUBE, F1, F2, FV, PWHH, PWHL, PWLH, PWLL, PWXX, DUTYH, DUTYL, FILT1, FILT2, HLBT, MEAN, LS-, PS-, PSD-, CS-, TF-, CH-, MAG, LOGMAG, PHASE, REAL, IMAG, TREND, TRENDM, TRENDD, TRENDF, _HH, _LL, _XX and ZC
User defined computation (numeric)	Expressions can be created through the combination of the following operations for numeric values, Maximum 20 expressions, F1 to F20. +, -, *, /, ABS, SQRT, SQR, LOG, LOG10, EXP and NEG
Efficiency equation	Up to 4 efficiencies can be displayed by setting the items to measure with the efficiency equations
De-skew function	Compensate the phase difference between voltage and current modules of a power measurement element
GO/NO-GO determination	The following two types of GO/NO-GO determination are available - Determination using zones on the screen - Determination using the automated measurement values of waveform parameters The following operations can be performed at the time of determination: Output of screen, WDF binary capture data, saving of waveform data (to binary, ASCII, or floating-point), or sounding of a notification buzzer.
Recalculation of numeric parameters	Recalculation of numeric parameters can be done after changing the calculation condition
File Functions	
Item	Specification
Save	Setup data, Waveform data (including History data), numeric data and image data can be saved external media
Read	Waveform data (including History data up to 1000 waveform) and setup data

FFT Function

Item	Specification
Waveform to be computed	Un, In, Pn, AUXn and MATHn
Number of channels	2
Computation range	From the specified computation start point until the specified number of

Computed points	$1 \mathrm{k}, 2 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}$, or 100 k
Time windows	Rectargular, Hanning, Hamming, Flat top, or Exponential When the Exponential time window is selected, the following settings

When the Exponential time window is selected, the following settings
Damping rate: The weight of the last data point, with the weight of the first data point in the specified number of FFT points taken to be 100%
Selectable range: 1 to 100%
Resolution: 1\%
Force: Set the area over which computation is performed in terms of a percentage from the first FFT point, taking the number of FFT points to
be 100%. be 100%.
Selectable range: 1 to 100%
Resolution: 14
Force2: The setting applies to the output (response) signal (second parameter) of a two-waveform FFT
Selectable range: 1 to 100%
Resolution: 1\%
Displaying window The FFT computation results are displayed in a separate window independent from the normal waveform display Display range: Set the display range by setting Center and Sensitivity

Built-in Printer (/B5 Option)

Item	Specification
Print system	Thermal line dot system
Dot density	8 dot $/ \mathrm{mm}$
Sheet width	112 mm
Effective print width	104 mm (832 dots)
Used for	Producing a hard copy of the screen

Storage Functions

SD Card

Item	Specification
Number of slot	1
Maximum capacity	16 GB
Supported cards	SD and SDHC compliant memory card
Compatible USB storage devices	Mass storage devices that are compliant with USB Mass Storage Class Ver. 1.1
Maximum	

USB Peripheral Interface

Item Specification

Number of ports

Specifications of PX8000, 760811, 760812, 760813 and 760851

Connector type	USB type A (receptacle)
Electrical and mechanical specifications	USB Rev. 2.0 compliant
Supported transfer mode	HS (High Speed, 480 Mbps$)$, FS Full Speed, 12 Mbps), and LS Low Speed, 1.5 Mbps)
Power supply	$5 \mathrm{~V}, 500 \mathrm{~mA}$ for each port
Input/Output EXT TRIG IN	
Item	Specification
Connector type	BNC
Input level	TTL
Minimum pulse width	100 ns
Detected edge	Rising or falling
Trigger delay time	Within $100 \mathrm{~ns}+1$ sample
EXT TRG OUT	
Item	Specification
Connector type	BNC
Output level	5 VCMOS
Logic	Low when a trigger occurs and high after acquisition is completed.
Trigger delay time	Within $100 \mathrm{~ns}+1$ sample
Output hold time	100 ns or more
EXT CLK IN	
Item	Specification
Connector type	BNC
Input level	TTL
Minimum pulse width	50 ns
Detected edge	Rising
Sampling jitter	Within $100 \mathrm{~ns}+1$ sample
Frequency range	Maximum 9.5 MHz
Video Output	
Connector type	D-Sub 15 pin receptacle
Output format	Analog RGB
Output resolution	XGA-compliant output 1024×768 dots Approx. 60 Hz Vsync (dot clock frequency: 66 MHz)
GO/NO-GO Determination I/O	
Connector type	RJ-11 modular jack
Input level	TTL or contact
Output level	5 V CMOS
External Start/Stop Input	
Connector type	RJ-11 modular jack
Input level	TTL or contact
Comp Output	
Output signal frequency	$1 \mathrm{kHz} \pm 1 \%$
Output amplitude	$1 \mathrm{Vp}-\mathrm{p} \pm 10 \%$

Functional specification	SH1, AH1, T6, L4, SR1, RL1, PPO, DC1, DT0, and C0
Protocol	IEEE St'd 488.2-1992
Code	ISO (ASCII)
Mode	Addressable mode
Address	Talker and listener addresses can be specified from 0 to 30.
Remote mode release	Remote mode can be cleared with the SHIFT + CLEAR TRACE key (except during Local Lockout).
Ethernet	1
Ports RJ-45 modular jack Connector type IEEE802.3 Electrical and mechanical specifications Ethernet (1000BASE-T, 100BASE-TX or 10BASE-T) Transmission system TCP/IP Communication protocols DHCP, DNS, SNTP, FTP server and client, and VXI-11 Supported services 1 USB USB type B receptacle Number of ports USB Rev. 2.0 compliant Connector type HS (High Speed, 480 Mbps) and FS (Full Speed, 12 Mbps) specifical and mechanical USBTMC-USB488 (USB Test and Measurement Class Ver. 1.0) Supported transfer modes APC with a USB port, running the English or Japanese version of Supported protocols Windows7 (32 bit), Windows Vista (32 bit)	

Display Items

Normal	Measurement functions for each channel (Power measurement element)
Voltage (V)	Urms: true rms value, Umn: rectified mean value calibrated rms value, Udc: simple average value, Urmn; rectified mean value, Uac: AC component
Current (A)	Irms: true rms value, Imn: rectified mean value calibrated rms value, Idc: simple average value, Irmn; rectified mean value, lac: AC component
Active Power (W)	P
Apparent Power (VA)	S: selectable of Urms $\times 1 \mathrm{rms}, \mathrm{Umn} \times \mathrm{Imn}, \mathrm{Udc} \times \mathrm{Idc}, \mathrm{Urmn} \times \mathrm{Irmn}$ or Umn $\times 1 \mathrm{rms}$
Reactive Power (Var)	Q
Power Factor	Lambda (P/S)
Phase Angle (deg)	Phi (cos $^{-1} \mathrm{P} / \mathrm{S}$)
Frequency (Hz) ${ }^{1}$	fU: Voltage frequency fl: Current frequency (when it is lower frequency of the range, customer can select Error or 0 for the data)
Voltage Peak value of \pm (V)	U+pk: Voltage maximum +peak value during one update period U-pk: Voltage maximum -peak value during one update period
Current Peak value of \pm (A)	I+pk: Current maximum +peak value during one update period I-pk: Current maximum -peak value during one update period
Instant Power Peak value of $\pm(\mathrm{W})$	P+pk: Instant Power maximum +peak value during one update period P-pk: Instant Power maximum - peak value during one update period
Crest Factor	CfU: Voltage crest factor, Cfl: Current crest factor
Corrected Power (W)	Pc: IEC76-1 (1976), IEEE C57.12.90-1993, or IEC76-1 (1993)

Probe Power Output (/P4 Option)
Number of output terminals 4
Output voltage $\pm 12 \mathrm{Vdc}$
Output current Total maximum of 1 A
Sensor Power Output (/PD2 option)

Number of output terminals	4
Output voltage	+15 V

Output current Maximum of $1.8 \mathrm{~A} / \mathrm{CH}$
Time Sync Signal Input (IRIG: /C20 option)

Input connector	BNC
Number of input connectors	1
Supported IRIG signals	A002, B002, A132 and B122
Input impedance	Can be switched between 50 Ohm and 5 k Ohm.
Maximum input voltage	$\pm 8 \mathrm{~V}$
Used for	Synchronizing the PX8000 time
Synchronizing the sample clock	
Cock sync range	± 80 ppm
Post-sync accuracy	No drift from the input signal

Allowable maximum current	36 A
Withstand voltage	1000 V CAT III
Contact resistance	Less than 10 m Ohm
Material of contact	Brass and bronze with Nickel surface coat
Insulator	Polyamide (Voltage), polypropylene (Current)
Diameter of wire	Maximum 1.8 mm (Voltage), 2.5 mm (Current)
thickness of covering	Maximum 3.9 mm (Voltage), 4.0 mm (Current)
GP-IB	
Usable devices	National Instruments Corporation PCI-GPIB or $\mathrm{PCl}-\mathrm{GPIB}+$ PCle-GPIB or PICe-GPIB + PCMCIA-GPIB or PCMCIA-GPIB+ GPIB-USB-HS Use driver NI-488.2M Ver. 1.60 or later
Connector type	24-pin connector
Electrical specification	Complies with IEEE St'd 488-1978 (JIS C 1901-1987)

Sigma Items	Symbol and meaning
Item	Sigma Measurement functions for both A and B wiring systems (power element combination)
Voltage (V)	UrmsSigima: true rms value, UmnSigma: rectified mean value calibrated rms value, UdcSigma: simple average value, UrmnSigma; rectified mean value, UacSigma: AC component
Current (A)	IrmsSigma: true rms value, ImnSigma: rectified mean value calibrated rms value, IdcSigma: simple average value, IrmnSigma; rectified mean value, lacSigma: AC component
Active Power (W)	PSigma
Apparent Power (VA)	SSigma (depends on Type, 1, 2 or 3)
Reactive Power (Var)	QSigma (depends on Type, 1, 2 or 3)
Power Factor	LambdaSigma
Phase Angle (deg)	PhiSigma
Corrected Power (W)	PcSigma: IEC76-1 (1976), IEEE C57.12.90-1993, or IEC76-1(1993)
Efficiency 1 to 4	Eta 1 to Eta 4 by setting of user

Harmonic analysis function (/G5 Option)

Item Symbol and meaning
Harmonics Measuring functions of Harmonic analysis
Voltage $(\mathrm{V}) \quad \mathrm{U}$ (k): k-th order ${ }^{14}$ voltage true rms value, U : total ${ }^{2}$ voltage true rms value
Current (A) I (k): k-th order current true rms value, I: total current true rms value
Active Power (W) $\quad \mathrm{P}(\mathrm{k})$: k-th order active power value, P : total active power value
Apparent Power (VA) $\quad \mathrm{S}(\mathrm{k}):$ k-th order apparent power value, S : total apparent power value

	When $k=0$, it shows $D C$ component
Reactive Power (Var)	$Q(k): k$-th order reactive power value, $Q:$ total reactive power value

Power Factor Lambda(k): k-th order power factor value, Lambda: total power factor value
Phase Angle (deg) Phi (k): Phase angle between k-th order voltage and current, Phi: Phase
Phi (k): $\begin{aligned} & \text { Phase angle between } k \text {-th order voltage and current, Phi: } \\ & \text { angle of current refers to voltage waveform }\end{aligned}$
Phiu (k): Phase angle of k-th order voltage refers to the fundamental
PhiU (k): Phase angle of k-th order voltage refers to the fundamental
voltage U (1)
Phil (k): Phase angle
(k). Phase angle of k-th order current refers to the fundamental
current 1 (1)

Impedance of load circuit (Ohm) Z(k): Impedance of load circuit of th k -th order harmonic waveform

Specifications of PX8000, 760811, 760812, 760813 and 760851

Resistance and reactance of load circuit (Ohm)	Rs (k): Resistance of load circuit of k-th order harmonic waveform when resistor R, inductor L and capacitor C are connected in series Xs (k): Reactance of load circuit of k-th order harmonic waveform when resistor R, inductor L and capacitor C are connected in series Rp (k): Resistance of load circuit of k-th order harmonic waveform when resistor R, inductor L and capacitor C are connected in parallel Xp (k): Reactance of load circuit of k-th order harmonic waveform when resistor R, inductor L and capacitor C are connected in parallel
Harmonic distortion factor [\%]	Undf (k): Ratio of k-th order voltage value of the voltage value, $\mathrm{U}(1)$ or U Ihdf (k): Ratio of k -th order current value of the current value, I (1) or I Phdf (k): Ratio of k-th order power value of the power value, $P(1)$ or P
Total harmonic distortion [\%]	Uthd: Ratio of the total harmonic voltage ${ }^{33}$ of the voltage value, $\mathrm{U}(1)$ or U Ithd: Ratio of the total harmonic current of the current value, I (1) or I Pthd: Ratio of the total harmonic power of the power value, $\mathrm{P}(1)$ or P
Telephone harmonic factor ${ }^{4}$ (IEC34-1 (1996))	Uthf: Telephone harmonic factor of voltage Ithf: Telephone harmonic factor of current
Telephone influence factor ${ }^{\text {4 }}$ (IEEE Std 100 (1996))	Utif: Telephone influence factor of voltage Itif: Telephone influence factor of current
Harmonic voltage factor ${ }^{4}$ (IEC34-1 (1996))	hvf: Harmonic voltage factor
Harmonic current factor ${ }^{*}$ (similar method of hvf)	hcf: Harmonic current factor
Frequency of PLL source	fU or fl, frequency of PLL source, voltage (fU) or current (fl) Shows [-------] when the PLL source is not set.
K-factor	K-factor
*1 Harmonic order k is the an integer limit is determined automatically ac *2 The total value is determined from limit of harmonics analysis). The DC *3 Total harmonic values are determin *4 The expression may vary dependin	rom 0 to the upper limit of harmonic analysis. The 0 -th order is the DC component. The upper cording to the PLL source frequency. It can go up to the 500th harmonic order. he fundamental waveform (1st order) and all harmonic components (2nd order to the upper component can also be included. drom all harmonic components (the 2nd order to the upper limit of harmonic analysis) on the definitions in the standard IEC or IEEE. Please refer to the Function sheet.
Sigma ltems	
Item	Symbol and the meaning
Harmonic	Sigma Measurement functions for both A and B wiring systems (power element combination)
Voltage (V)	USigma (k): $\begin{aligned} & \mathrm{k} \text { is 1, fundamental voltage true rms value, or } \mathrm{k} \text { is total, } \\ & \text { total voltage true rms value }\end{aligned}$
Current (A)	ISigma (k): $\begin{aligned} & \mathrm{k} \text { is 1, fundamental current true rms value, or } \mathrm{k} \text { is total, } \\ & \text { total current true rms value }\end{aligned}$
Active Power (W)	PSigma (k):k is 1, fundamental active power value, or k is total, total active power value
Apparent Power (VA)	SSigma (k): $\begin{aligned} & \mathrm{k} \text { is 1, fundamental apparent power value, or k is total } \\ & \text { apparent power value }\end{aligned}$
Reactive Power (Var)	QSigma (k): $\begin{aligned} & \mathrm{k} \text { is 1, fundamental reactive power value, or } k \text { is total, } \\ & \text { total reactive power value }\end{aligned}$
Power Factor	LambdaSigma (k) : k is 1 , fundamental power factor value, or k is total, total power factor value
*The total value is determined from th limit of harmonics analysis). The DC value are calculated.	fundamental waveform (1st order) and all harmonic components (2nd order to the upper component can also be included. As for Sigma values, only Total values and fundamental
Phase items	
Item	Symbol and the meaning
Harmonic	Measurement functions of phase angles among power elements
Phase angle U1-U 2 (deg)	PhiU1-U2: Phase angle of power element 2 fundamental voltage (U2 (1)) refers to the power element 1 fundamental voltage (U1 (1))
Phase angle U1-U3 (deg)	PhiU1-U3: Phase angle of power element 3 fundamental voltage (U3 (1)) refers to the power element 1 fundamental voltage (U1 (1))
Phase angle U1-11 (deg)	PhiU1-11: Phase angle of power element 1 fundamental current (11 (1)) refers to the power element 1 fundamental voltage (U1 (1))
Phase angle U2-12 (deg)	PhiU2-12: Phase angle of power element 2 fundamental current (12 (1)) refers to the power element 2 fundamental voltage (U2 (1))
Phase angle U3-13 (deg)	PhiU3-13: Phase angle of power element 3 fundamental current ($13(1)$) refers to the power element 3 fundamental voltage (U3(1))
Phase angle 11-12 (deg)	Phil1-12: Phase angle of power element 2 fundamental current (12(1)) refers to the power element 1 fundamental voltage (11(1))
Phase angle 12-13 (deg)	Phil2-13: Phase angle of power element 3 fundamental current (13 (1)) refers to the power element 2 fundamental voltage (12 (1))
Phase angle 13-11 (deg)	Phil3-11: Phase angle of power element 1 fundamental current (11 (1)) refers to the power element 3 fundamental voltage ($(13$ (1))
Delta Function	
Item	Symbol and the meaning
Delta	Measurement function of Delta calculation by each Sigma wiring system
Voltage [V]	Delta U1 to Delta U3, and Delta Usigma Difference: differential voltage calculation of U1 to U2, 3P3W -> 3V3A: Line to Line voltage calculation between U1 and U2 DELTA -> STAR: Phase voltages calculation by Line to Line voltages STAR -> DELTA: Line to Line voltage calculation by Phase voltages
Current [A]	Deltal Difference: differential current calculation of 11 to I 2 , 3P3W -> 3V3A: Phase current calculation excepting I1 and I2 DELTA -> STAR: Neutral current calculation by Phase currents STAR -> DELTA: Neutral current calculation by Phase currents
Power [W]	Delta P1 to Delta P3, and Delta P Sigma DELTA -> STAR: Phase powers calculation by 3V3A wiring * Calculate each Sigma function
AUX analysis function Torque and Speed input	
When motor mode is on	
Item	Symbols and Meanings
Rotating speed Torque Monitor output (W)	Speed: Motor rotating speed Torque: Motor torque Pm: Motor's mechanical output (mechanical power)
When motor mode is off	
Item	Symbols and Meanings
Auxiliary input	Aux3 to Aux8

- Maximum display (OL conversion)

Analog: Displays up to 140% of the range rating
Overload display [-OL-] appears if 140% is exceeded.
Pulse: Displays up to 2 MHz (OF display at 10 GHz or higher if scaling is used)

- Minimum display (zero suppression)

Analog: None
Pulse: Displays pulse frequency down to 1.8 Hz
Frequencies less than 1.8 Hz are suppressed to zero.
AUX1, AUX2 $\quad A(X \times N U L L)+B$
A: slope of the external signal
X: average value of the external signal's input voltage
(AVG [AUX_input1(n)])
B: offset
NULL: null value
$A(X \times N U L L)+B$
A: slope of the external signa
X: Pulse $[\mathrm{Hz}]$
B: offset
B: offset
If the pulse level is lower than the measurement lower limit, "Error" or " 0 " can be selectable.
Accuracy
$\begin{array}{lll}\text { Accuracy } & \text { Conditions } & \text { Accuracy: Within } 6 \text { months after calibration } \\ \text { (at } 6 \text { months) } & & \text { - Standard operating conditions (Temperature: } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} . \text { Humidily: }\end{array}$
30% RH to 75% RH.)
After the warm-up ti
Input signal: Sine wave has elapsed

- Common mode voltage: o
- Time/div is set to longer than $50 \mu \mathrm{~s}$

Frequency filter ON when input frequency is lower than 1 kHz Line filter: OFF

- Sampling points: 5 points/cycle at least
f is the frequency.
- Input signal is 5 cycles or less and there are 10 k points of sampled data or more observation time.
If input signal is not 5 cycles and number of sampling data is not 10 k
points, add following values (reference value)
(Reading error/10) $\times(5 /$ measured cycle number $) \times(10 \mathrm{k} /$ sampling point number)\% of reading
Frequency Accuracy
DC: $\pm(0.2 \%$ of reading $+0.2 \%$ of range $)$

$\begin{array}{ll}10 \mathrm{~Hz} \leq f< & 45 \mathrm{~Hz}: \pm(0.2 \% \text { of reading }+0.1 \% \text { of range }) \\ 45 \mathrm{~Hz} \leq f \leq \quad 1 \mathrm{kHz}: \pm(0.1 \% \text { of reading }+0.1 \% \text { of range })\end{array}$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}: \pm(0.1 \%$ of reading $+0.1 \%$ of range)
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}: \pm(0.2 \%$ of reading $+0.2 \%$ of range)
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}: \pm(0.6 \%$ of reading $+0.4 \%$ of range)
$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}: \pm(0.6 \%$ of reading $+0.4 \%$ of range)
$200 \mathrm{kHz}<\mathrm{f} \leq 400 \mathrm{kHz}: \pm(1 \%$ of reading $+0.4 \%$ of range)
$400 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}: \pm((0.1+0.003 \times \mathrm{P}) \%$ of reading $+0.4 \%$ of range $)$
$1 \mathrm{MHz}<f \leq 10 \mathrm{MHz}=\left(0.1+0.003 \times \mathrm{f}^{*}\right) \%$ of reading $+4 \%$ of range $)$
$10 \mathrm{Mz}<1 \leq 10 \mathrm{Mz}:=10.1+0.003 \times \mathrm{f})$ ofreang $+4 \%$ of range
Measurement bandwidth $20 \mathrm{MHz}(-3 \mathrm{~dB}$, Typical)
Accuracy over 1 MHz is design value
Direct (up to 5A)
Frequency Accuracy
$0.1 \mathrm{~Hz}<\mathrm{f}<\quad \mathrm{HC}: \pm(0.2 \%$ of reading $+0.2 \%$ of range $)+20 \mu \mathrm{~A}$
$\begin{array}{lll}0.1 \mathrm{~Hz} \leq f< & 10 \mathrm{~Hz}: \pm(0.2 \% \text { of reading }+0.2 \% \text { of range }) \\ 10 \mathrm{~Hz} \leq f< & 45 \mathrm{~Hz}: \pm(0.2 \% \text { of reading }+0.1 \% \text { of range })\end{array}$
$\begin{array}{ll}10 \mathrm{~Hz} \leq f \leq & 45 \mathrm{~Hz}: \pm(0.2 \% \text { of reading }+0.1 \% \text { of range) } \\ 45 \mathrm{~Hz} \leq f \leq \quad 1 \mathrm{kHz}: \pm(0.1 \% \text { of reading }+0.1 \% \text { of range) }\end{array}$
$45 \mathrm{~Hz} \leq \mathrm{f} \leq \quad 1 \mathrm{kHz}: \pm(0.1 \%$ of reading $+0.1 \%$ of range)
$1 \mathrm{kHz}<\mathrm{f} \leq \quad 10 \mathrm{kHz}: \pm(0.1 \%$ of reading $+0.1 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}: \pm(0.2 \%$ of reading $+0.2 \%$ of range $)$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}: \pm(0.6 \%$ of reading $+0.4 \%$ of range)
$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}: \pm(0.6 \%$ of reading $+0.4 \%$ of range $)$
$200 \mathrm{kHz}<\mathrm{f} \leq 400 \mathrm{kHz}: \pm(1 \%$ of reading $+0.4 \%$ of range)
$400 \mathrm{kHz}<f \leq 500 \mathrm{kHz}: \pm\left(\left(0.1+0.004 \times \mathrm{f}^{*}\right) \%\right.$ of reading $+0.4 \%$ of range $500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}: \pm\left(0.1+0.004 \times \mathrm{f}^{*}\right) \%$ of reading $+4 \%$ of range $)$
-Measurement bandwidth $10 \mathrm{MHz}(-3 \mathrm{~dB}$, Typical)
Sensor Frequency Accuracy (760812)
$D C: \pm(0.2 \%$ of reading $+0.2 \%$ of range $)+50 \mu \mathrm{~V}$
$0.1 \mathrm{~Hz} \leq \mathrm{f}<\quad 10 \mathrm{~Hz}: \pm(0.2 \%$ of reading $+0.2 \%$ of range)
$10 \mathrm{~Hz} \leq \mathrm{f}<\quad 45 \mathrm{~Hz}: \pm(0.2 \%$ of reading $+0.1 \%$ of range $)$
$45 \mathrm{~Hz} \leq \mathrm{f} \leq \quad 1 \mathrm{kHz}: \pm(0.1 \%$ of reading $+0.1 \%$ of range)
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}: \pm(0.1 \%$ of reading $+0.1 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}: \pm(0.2 \%$ of reading $+0.2 \%$ of range)
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}: \pm(0.6 \%$ of reading $+0.4 \%$ of range)
$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}: \pm(0.6 \%$ of reading $+0.4 \%$ of range)
$200 \mathrm{kHz}<\mathrm{f} \leq 400 \mathrm{kHz}: \pm(1 \%$ of reading $+0.4 \%$ of range)
$400 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}: \pm\left(0.1+0.003 \times \mathrm{f}^{+}\right) \%$ of reading $+0.4 \%$ of range $)$
$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}: \pm\left(\left(0.1+0.003 \times \mathrm{f}^{+}\right) \%\right.$ of reading $+4 \%$ of range)
$1 \mathrm{MHz}<\mathrm{f} \leq 10 \mathrm{MHz}: \pm\left(0.1+0.003 \times \mathrm{f}^{*}\right) \%$ of reading $+4 \%$ of range $)$
- Measurement bandwidth $20 \mathrm{MB}(-3 \mathrm{~dB}$, Typical)

Accuracy over 1 MHz is design value
Direct (up to 5A) Accuracy
Frequency
C: $\pm(0.2 \%$ of reading $+0.4 \%$ of range) $+20 \mu \mathrm{~A} \times \mathrm{U}$
$0.1 \mathrm{~Hz} \leq f<\quad 10 \mathrm{~Hz}: \pm(0.2 \%$ of reading $+0.2 \%$ of range)
$10 \mathrm{~Hz} \leq f<\quad 45 \mathrm{~Hz}: \pm(0.2 \%$ of reading $+0.1 \%$ of range $)$
$45 \mathrm{~Hz} \leq f \leq \quad 1 \mathrm{kHz}: \pm(0.1 \%$ of reading $+0.1 \%$ of range $)$ $\begin{aligned} & 1 \mathrm{kHz}<\mathrm{f} \leq \quad 10 \mathrm{kHz}: \pm(0.1 \% \text { of reading }+0.16 \% \text { of range }) \\ & 10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}: \pm(0.2 \% \text { of reading }+0.2 \% \text { of range })\end{aligned}$ $50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}:+(0.6 \%$ of reading $+0.4 \%$ of range) $50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}: \pm(0.6 \%$ of reading $+0.4 \%$ of range)
$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}: \pm(1.5 \%$ of reading $+0.6 \%$ of range $)$ $100 \mathrm{kHz}<f \leq 200 \mathrm{kHz}: \pm(1.5 \%$ of reading $+0.6 \%$ of range) $400 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}: \pm\left(\left(0.1+0.006 \times \mathrm{f}^{*}\right) \%\right.$ of reading $+0.6 \%$ of range $)$ $500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}: \pm\left(\left(0.1+0.006 \times \mathrm{f}^{*}\right) \%\right.$ of reading $+6 \%$ of range $)$

Sensor Frequency Accuracy (760812)
$D C: \pm(0.2 \%$ of reading $+0.4 \%$ of range $)+50 \mu \mathrm{~V} \times \mathrm{U}$ $0.1 \mathrm{~Hz} \leq f<\quad 10 \mathrm{~Hz}: \pm(0.2 \%$ of reading $+0.2 \%$ of range $)$ $10 \mathrm{~Hz} \leq \mathrm{f}<\quad 45 \mathrm{~Hz}: \pm(0.2 \%$ of reading $+0.1 \%$ of range $)$ $1 \mathrm{kHz}<\mathrm{f} \leq \quad 10 \mathrm{kHz}: \pm(0.1 \%$ of reading $+0.16 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}: \pm(0.2 \%$ of reading $+0.2 \%$ of range)
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}: \pm(0.6 \%$ of reading $+0.4 \%$ of range $)$
$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}: \pm(1.5 \%$ of reading $+0.6 \%$ of range $)$
$200 \mathrm{kHz}<\mathrm{f} \leq 400 \mathrm{kHz}: \pm(1.5 \%$ of reading $+0.6 \%$ of range) $400 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}: \pm\left(0.1+0.004 \times \mathrm{f}^{*}\right) \%$ of reading $+0.6 \%$ of range $)$ $500 \mathrm{kHz}<\mathrm{f} \leq \quad 1 \mathrm{MHz}: \pm\left(\left(0.1+0.004 \times \mathrm{f}^{*}\right) \%\right.$ of reading $+6 \%$ of range $)$
is unt of fin the equation for the reading error is (kHz).
U is voltage reading value.

Specifications of PX8000, 760811, 760812, 760813 and 760851

Conditions;
Add $\pm(0.2 \%$ of reading) to Current accuracy when Sensor current input range is 50 mV to 500 mV , Direct current input range is 10 mA to 200 mA and input signal frequency is 1 kHz to 50 kHz . Add $\pm(0.2 \%$ of reading) to Power accuracy when Sensor current input range is 50 mV to 500 mV and input signal frequency is 7 kHz to 50 kHz .
Add (Rated range/Maximum rated range) $\times 0.005 \times f$ of reading, when input voltage is over 400 Vrms (f unit: kHz)
nfluence of input level
When input level is 110% to 140% of range with sine waveform, reading error is twice.
infle of range with DC waveform, reading erroris twice
Influence of temperature changes after zero-level compensation or range change
Add $20 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$ to Direct current accuracy for DC
Add $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to Sensor current accuracy
Add additional voltage value $(\mathrm{V}) \times$ additional current value (A) to Power accuracy for DC
Influence of self-generated heat caused by voltage input
Add the following values to the voltage and power accuracies:
AC input signal: $0.0000001 \times \mathrm{U}^{2} \%$ of reading
DC input signal: $0.0000001 \times \mathrm{U}^{2} \%$ of reading $+0.0000001 \times \mathrm{U}^{2} \%$ of range
Even if the voltage input decreases, the influence from self-generated heat continues until the temperature of the input resistor decreases
Influence of self-generated heat caused by current input
Add the following values to the current and power accuracies
DC input signal: $0.006 \times 1^{2} \%$ of reading $0.006 \times 1^{2} \%$ of reading $+0.004 \times 1^{2} \mathrm{~mA}$
1 is the current reading (A).
Add the following values to the current and power accuracies
AC input signal: $0.0000001 \times \mathrm{U}^{2} \%$ of reading
$0.006 \times 1^{2} \%$ of reading
DC input signal: $0.0000001 \times U^{2} \%$ of reading $+0.0000001 \times U^{2} \%$ of range

J is the voltage reading $(\mathbb{I}, I$ is the current reading (A)
Even if the voltage input decreases, the influence from self-generated heat continues until he
Guaranteed accuracy ranges for frequenc
All accuracy figures for 0.1 Hz to 10 Hz are desige, and current
The voltage and power accuracy figures for DC
are design values.
The current and power accuracy figures for 100 kHz to 1 MHz when the current exceeds 5 A are reference values.
Effective input range
Udc, Idc: 0% to $\pm 110 \%$ of the measurement range
Umn, Imn: 10% to 110% of the measurement range
Urmn, Irmn: 10\% to 110% of the measurement rang
Power:
DC measurement: 0% to $\pm 110 \%$
AC measurement: 1% to 110% of the voltage and current ranges; up to $\pm 110 \%$ of the power range
However, the synchronization source level must meet the frequency measurement input signal level.
Line filter influence
Voltage and current (Direct and Sensor)
45 Hz to 66 Hz : Add 0.2% of reading
Lower than 45 Hz : Add 0.5% of reading
Power
45 Hz to 66 Hz : Add 0.3% of reading
Lower than 45 Hz : Add 1\% of reading
At (Cutoff frequency of Line filter) / 10 Hz : Add 1.5% of reading
Add $\pm 0.02 \%$ of reading $/{ }^{\circ} \mathrm{C}$ within the range of $5^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
When $\lambda=0$ (S is Appare
$\pm 0.15 \%$ of S for 45 Hz to 66 Hz .
For other frequency ranges, below figures are reference values
$\pm(0.017 \times \mathrm{f}) \%$ of S (f is kHz).
Input level is 0.15% or more of apparent power
When $0<\lambda<1$
(Power reading) \times [(power reading error\%) + (power range error\%) \times (power range/indicated apparent power value) $+\{\tan \Phi \times$ (influence when $\lambda=0) \%\}]$,
where Φ is the phase angle between the voltage and current.
Accuracy of reactive power Q Accuracy of apparent power $+\left(v\left(1.0004-\lambda^{2}\right)-\sqrt{ }\left(1-\lambda^{2}\right)\right) \times 100 \%$ of range
$\pm\left[(\lambda-\lambda / 1.0002)+\mid \cos \Phi-\cos \left\{\Phi+\sin ^{-1}(\right.\right.$ (influence from the power factor when $\left.\left.\left.\lambda=0) \% / 100\right)\right\}\right] \pm 1$ digit. The voltage and current signals are rated range inputs.
Accuracy of phase angle Φ
$\pm\left[\left|\Phi-\left\{\cos ^{-1}(\lambda / 1.0002)\right\}\right|+\sin ^{-1}\{\right.$ (influence from the power factor when $\left.\left.\lambda=0) \% / 100\right\}\right]$ deg ± 1 digit. The voltage and current signals are rated range inputs.
Lead and lag detection (Phase angle Φ 's D (lead) and G (lag))
The lead and lag of the voltage and current inputs can be detected correctly for the following: Sine wave input
ared value is 50% or more of measurement range.
Phase differ 10 Hz to 10 kHz
When frequency filer is 0 , 175 degree)
However, Cutoff frequency is 100 Hz filter, it is specified lower than 60 Hz .
Accuracy at 1 year 1.5 times the reading errors for the accuracy at 6 months
General Specifications

Item	Specification
Standard operating conditions	Ambient Temperature: $23 \pm 5^{\circ} \mathrm{C}$ Ambient humidity: 20 to $80 \% \mathrm{RH}$ Supply Voltage and frequency Within $\pm 1 \%$ of rating After the PX8000 has been warmed up and then calibration has been performed.
Warm up time	At least 30 mins
Storage environment	Temperature: -25 to $60^{\circ} \mathrm{C}$ Humidity: 20 to 80% RH (no condensation) Altitude: 3000 m or less
Operation environment	Temperature: 5 to $40^{\circ} \mathrm{C}$ normal position, 5 to $35^{\circ} \mathrm{C}$ when the rear panel is parallele to the flower Humidity: 20 to 80% RH without using the printer, no condensation Humidity: 35 to 80% RH when the printer is used, no condensation Altitude: 2000 m or less
Rated supply voltage	100 to $120 \mathrm{VAC} / 220$ to 240 VAC (Auto switching)
Rated supply voltage range	90 to $132 \mathrm{VAC} / 198$ to 264 VAC
Rated supply frequency	$50 / 60 \mathrm{~Hz}$
Permitted supply voltage frequency range	48 to 63 Hz

Maximum power consumption	$200 \mathrm{VA}, 400 \mathrm{VA}$ (with /B5 is used, when /PD2 is installed)
Withstand voltage	1500 VAC for one minute between the power supply and case
Insulation resistance	10 M Ohm or more for 500 VDC between the power supply and case
External dimensions	$355 \mathrm{~mm}(\mathrm{~W}) \times 259 \mathrm{~mm}(\mathrm{H}) \times 180 \mathrm{~mm}(\mathrm{D})$, not including the handle and protrusions Approx. $355 \mathrm{~mm}(\mathrm{~W}) \times 259 \mathrm{~mm}(\mathrm{H}) \times 245 \mathrm{~mm}(\mathrm{D})$, excluding the handle and protrusions (when /PD2 is installed)
Weight	Approx. 6.5 kg (weight of the PX8000 only without paper and with the $/ \mathrm{M} 2$, /B5, /C20, /M2, /G5 and /P4 options installed) Approx. 7.5 kg (main unit only with /B5/C20/G5/M2/P4/PD2 installed, excluding recording paper)
Instrument cooling method	Forced air cooling. Exhaust on the left side and top panel. Forced air Air vents on the left and top panels, and back (when /PD2 is installed)
Battery backup	The settings and clock are backed up with an internal lithium battery.
Backup battery life	Approx. 5 years (at an ambient temperature of $25^{\circ} \mathrm{C}$)
Standard Accessories	Front panel protection cover 1 Cover panel 8 Rubber stoppers 4 Power cord 1 Pinter roll paper 1 (/B5 only) Getting started Guide 1 CD manual 1 Voltage Input Adapter 4 Current Input Adapter 4 Wrench 1
Safety standard	Compliance EN61010-1, EN61010-2-030, EN61010-031, EN 60825-1 standards - Over voltage category (installation category) II - Measurement Category II - Pollution degree 2
Emissions	Compliance EN61326-1 Class A, standards EN61326-2-1, EN55011 Class A Group 1, RCM EN55011 Class A, Group1 - Class A Korean KC Standard *Warning for Class A instruments This is a Class A instrument based on Emission standards EN61326-1 and EN55011, and is designed for an industrial environment. Operation of this equipment in a residential area may cause radio interference, in which case users will be responsible for any interference which they cause.
Immunity	Compliance EN61326-1 Table 2 (for industrial locations), EN61326-2-1 standards
	Test items Electrostatic discharge: EN61000-4-2 Radiated immunity: EN61000-4-3 Conducted immunity: EN61000-4-6 Fast transient/burst: EN61000-4-4 Power frequency magnetic field: EN61000-4-8 Surge immunity: EN6100-4-5 Voltage dip and interruption: EN61000-4-11

The voltage module (760811 (VOLTAGE)), current module (760812/760813 (CURRENT)), and AUX module (760851 (AUX)) uses laser light sources internally. These modules correspond to Class 1 aser product as defined in IEC60825-1:Safety of Laser Products-Part 1:Equipment Classification, and Requirements. In addition, this instrument complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

Complies with 21 CFR 1040.10 and 1040.11 except for
deviaitions pursuan to Laser Notice No.50, dated June 24,2007 4.9.8.8 Myoin-cho, Hachioji-sh
Tokyo 192-8566, Japan

Model	Suffix Code	Description
PX8000		Precision Power Scope
Power Cord	-D	UL/CSA Standard
	-F	VDE standard
	-H	GB standard
	-N	NBR standard
	-Q	BS standard
	-R	AS standard
Languages	-HE	English menu
	-HG	German menu
	-HJ	Japanese menu
Options	/B5	Built-in printer (112 mm)
	/C20	IRIG function
	/G5	Harmonic measurement
	/M1	50 M memory expansion ${ }^{+1}$
	/M2	100 M memory expansion ${ }^{1}$
	/P4	4 Outputs of probe power
	/PD2	4 Outputs of sensor power ${ }^{2}$

1: Only one can be selected. Box for measurement, /PD2 option and Current module 760812 are required. The /PD2 option requires Firmware version Ver. 3.2 or later.

Name	Model	Description
Voltage Module	760811	Current module 760812 or 760813 must be ordered together
Current Module	760812	Voltage module 760811 must be ordered together
Current Module	760813	Voltage module 760811 must be ordered together
Auxiliary Module	760851	Auxiliary (AUX) module for sensor input, Torque/Speed
Name	Model	Description
PowerViewerPlus	760881	Viewer software dedicated for PX8000

The German language menu will be released soon
Selection of both /M1 and /M2 is not available for one main frame. The standard memory length is 10 M points/CH.
The power value will be calibrated using a pair of Voltage (760811) and Current (760812/760813) modules, therefore an equal quantity of these must be ordered together
A test Certificate of the Voltage Module includes the test results of the voltage and power value which are calibrated with one paired Current Module. Also the test Certificate of the Current Module includes the test results of the current and power values which are calibrated with one paired Voltage Module.

Standard Accessories;

Power cord (1 set), Front cover (1 set), Rubber foot (4 sets), Cover plate assy (8 sets), Current terminal adapter (4 sets), Voltage terminal adapter (4 sets), Printer chart (1 set for /B5), Getting started guide (1 set), CD (Getting started guide, Futures guide, User's Manual, Communication interface manual by PDF data)

iSOPRO is trademark of Yokogawa Electric Corporation

Safety Precautions for Laser Products
The voltage module (760811), the current modules (760812/760813) and the AUX module (760851) uses laser light sources internally. These modules or respond to Class 1 laser product as defined in the IEC60825-1: 2007 Safety of Laser Products-Part 1: Equipment Classification and Requirements.

\triangle Due to the nature of this product, it is possible to touch its mental parts. Therefore, there is a risk of electric shock, so the product must be used with caution.
*1: Use these products with low-voltage circuits (42 V or less).

Yokogawa's approach to preserving the global environment

- Yokogawa's electrical products are developed and produced in facilities that have received ISO14001 approval

■ In order to protect the global environment, Yokogawa's electrical products are designed in accordance with Yokogawa's Environmentally Friendly Product Design Guidelines and Product Design Assessment Criteria

Notice

- Before operating the product, read the user's manual thoroughly for proper and safe operation.
- If this product is for use with a system requiring safeguards that directly involve personnel safety, please contact the Yokogawa offices.
- Warranty period of the PX8000 and modules is three years.

This is a Class A instrument based on Emission standards EN61326-1 and EN55011, and is designed for an industrial environment.
Operation of this equipment in a residential area may cause radio interference, in which case users will be responsible for any interference which they cause.

Any company's names and product names mentioned in this document are trade names trademarks or registered trademarks of their respective companies. The User's Manuals of this product are provided by CD-ROM.

YOKOGAWA

YOKOGAWA TEST \& MEASUREMENT CORPORATION

Global Sales Dept. /E-mail: tm@cs.jp.yokogawa.com

The contents are as of May 2023. Subject to change without notice. Copyright © 2014, Yokogawa Test \& Measurement Corporation [Ed: 04/b] Printed in Japan, 305(KP)

