

LI5600 Series DIGITAL LOCK-IN AMPLIFIER

High-response, wide-band, high-stability

High-speed and high-sensitivity measurements for a wider range of applicable fields

- Scanning probe microscope Spintronics Ultrasonograph
- Terahertz spectroscopy
- Light absorption measurements
- Gyroscope Ceramic sensors Semiconductor lasers

Available in 4 models depends on your usage

The Lock-in Amplifiers from NF

58.671p

Fractional harmonic measurements

63 63

External reference 10 MHz synchronization

0000

Lock-in amplifiers that measure extremely small alternating signals hidden deep within noise are used in a wide range of advanced research fields, including scanning probe microscopes, terahertz spectroscopy and spintronics.

NF's lock-in amplifiers LI5600 series are deliver a high level of stability with post-phase detection digital processing.

They cover all areas of key functionality required for increasing reliability when measuring very small signals, such as an outstanding dynamic reserve up to 100 dB, update rates up to approximately 1.5 M samples/s (for LI5660/LI5655, approx. 780k samples/s for LI5650/LI5645), and smooth, high-speed 16-bit amplitude resolution output response. The maximum measurement frequency of the LI5660 is 11 MHz (with HF input connector), and 3 MHz for the LI5655, which covers a much higher range of frequencies compared to previous models. And LI5650/LI5645 covers low frequency of 1mHz to 250kHz measurement. They are equipped with the latest functions such as simultaneous 2-frequency measurements and fractional harmonic measurements to meet the needs for advance measurements in a wide range of applications and fields.

- Frequency range
 LI5660: 0.5 Hz to 11 MHz* *HF input used
 LI5655: 0.5 Hz to 3 MHz
 LI5650/LI5645: 1 mHz to 250 kHz
- Voltage measurement LI5660: 10 nV to 10 V* F.S. * C input used LI5655/LI5650/LI5645: 10 nV to 1 V F.S.
- Current measurement LI5660/LI5655/LI5650: 10 fA to 1 μA F.S.
- Minimum time constant LI5660/LI5655: 1 μs LI5650/LI5645: 5 μs
- Analog output update rate LI5660/LI5655: approx. 1.5 M samples/s LI5650/LI5645: approx. 780 k samples/s

- Simultaneous 2-frequency measurements (LI5660/LI5655/LI5650) Comes with dual 2-phase sensitive detectors for simultaneous measurement of two frequency components
- Fractional harmonic measurements
 Measurements at fractional times frequencies of the fundamental wave (1 to 63) / (1 to 63)
- External reference 10 MHz synchronous input Can be synchronized with the reference frequency of other devices by using an external reference frequency
- **Measurement parameters** X, Y, R, θ , DC, NOISE
- Interfaces USB, GPIB, RS-232, LAN
- Thin 2U size (88 mm)

				Sequiped – : Not equiped
	LI5660	LI5655	LI5650	LI5645
Frequency Range	0.5 Hz~11 MHz	0.5Hz~3MHz	1mHz~250kHz	1mHz~250kHz
Signal Input	Voltage (A, A-B, C ,HF), Current	Voltage (A, A-B), Current	Voltage (A, A-B), Current	Voltage (A, A-B)
10 Vrms input	◎ (Cinput , 0.5 Hz~3 MHz)	-	-	-
HF input	◎ (HF input ,10 kHz~11 MHz)	-	_	-
Sensitivity	A, A-B : 10nV~1V F.S. (0.5Hz~3MHz) C : 1mV~10V F.S. (0.5Hz~3MHz) HF : 1mV~1V F.S. (10kHz~11MHz) I : 10fA~1µA F.S.	10nV~1V F.S. (0.5Hz~3MHz) 10fA~1µA F.S.	10nV~1V F.S. (1mHz~250kHz) 10fA~1µA F.S.	10nV~1V F.S. (1mHz~250kHz) -
Input Referred Noise Voltage	4.5nV/ √Hz (supplement value)	$4.5 \text{nV} / \sqrt{\text{Hz}}$ (supplement value)	$4.5 \text{nV}/\sqrt{\text{Hz}}$ (supplement value)	$4.5 \text{nV}/\sqrt{\text{Hz}}$ (supplement value)
PSD	2-phase, 2 PSDs	2-phase, 2 PSDs	2-phase, 2 PSDs	2-phase, 1PSDs
Dynamic Reserve	100 dB	100 dB	100 dB	100dB
Time Constant	1 µs∼50 ks	1 µs∼50 ks	5 µs∼50 ks	5 µs∼50 ks
Analog Output Max. Update Rate	Approx. 1.5 M samples/s	Approx. 1.5 M samples/s	Approx. 780 k samples/s	Approx. 780 k samples/s
Fractional Harmonic Measurements	🔘 (1 to 63) / (1 to 63)	🔘 (1 to 63) / (1 to 63)	🔘 (1 to 63) / (1 to 63)	🔘 (1 to 63) / (1 to 63)
	of fundamental wave	of fundamental wave	of fundamental wave	of fundamental wave
Dual Frequency Simultaneous Measurements	0	0	0	-
External 10 MHz Synchronous	0	0	0	0
Measurement Parameter	X, Y, R, θ, DC, NOISE	X, Y, R, θ, DC, NOISE	X, Y, R, θ, DC, NOISE	X, Y, R, θ, DC, NOISE
Interfaces	USB. GPIB. RS-232. LAN	USB. GPIB. RS-232. LAN	USB. GPIB. RS-232. LAN	USB. GPIB. RS-232. LAN

Line-up

◎ : Equiped – : Not equiped

LI5660/LI5655/LI5650/LI5645

High-response and high-stability

Time Constant

The minimum time constant is 1µs for LI5660/LI5655 (5µs for LI5650/LI5645).

Synchronous filter

This is an integer-period moving-average filter. Ripple caused by detection is greatly reduced, and the output is nearly settled in the averaging interval (integer period), so the time constant can be reduced (to obtain faster response).

However, at higher signal frequencies, ripple suppression may be insufficient.

High-speed Locking Even at Low Frequencies

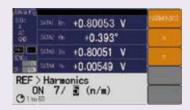
It takes just about two cycles to lock on to the reference signal even at low frequencies.

Superior Dynamic Reserve

Phase detection and subsequent processing are performed digitally. Output zero drift at high gains is smaller than the analog system, and up to 100 dB dynamic reserve can be obtained (measurement can be performed with a noise 100,000 times larger than the sensitivity, namely the signal full scale)

Up to 11 MHz with the wide-band, high-frequency input terminal (LI5660)

Voltage measurements can be made with a single end (A) or differential (A-B) input, as well as 10 Vrms input (C) and high-frequency input (HF) terminals with the LI5660. The HF input terminals can be used to measure up to 11 MHz.



Diverse range of reference signal sources and detection modes

Fractional harmonic measurement Measurements can be made at fractional times frequencies of the fundamental wave (1 to 63) / (1 to 63)

Fractions of the fundamental wave can be measured. With the LI5660/LI5655/ LI5650 2-frequency mode it is possible to measure the reference signal frequency given to the primary detector at n/m times the primary frequency, and the reference signal frequency given to the secondary detector at n times or a different value to primary frequency.

Fractional Harmonic

Simultaneous 2-frequency measurements 2-phase (Rcos0, Rsin0), Dual PSD (primary PSD, secondary PSD)

Simultaneous measurements of 2 frequency components

Ratio calculation
 Phase detectors connected in cascade

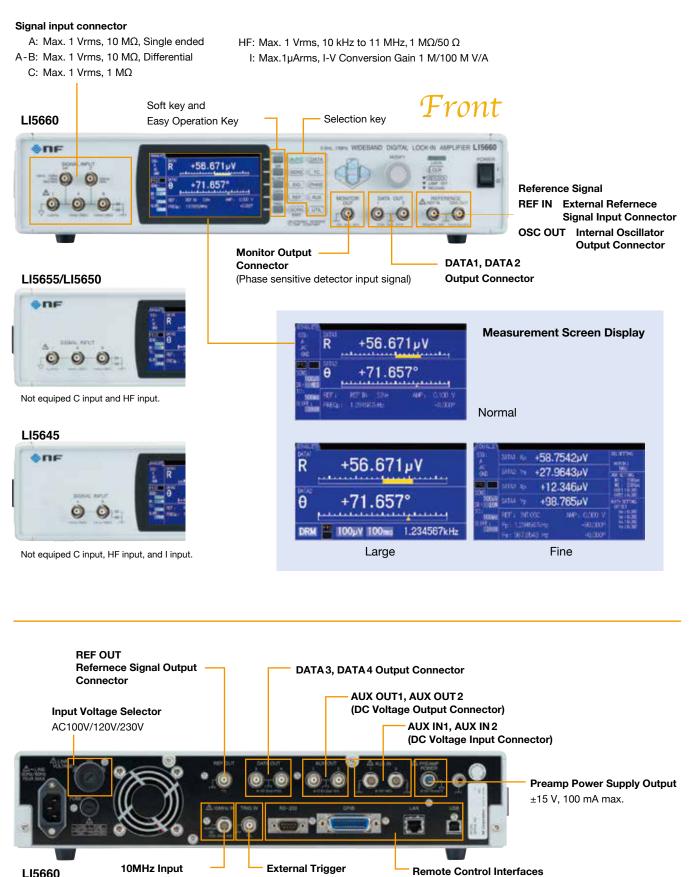
This equipment comes with two 2-phase sensitive detectors (PSD), allowing simultaneous measurement of two frequency components that are included in a input signal. Measurements that previously required two lock-in amplifiers using the dual beam method can now be made with a single equipment. Ratio calculations can be made by determining the ratio between the measured value and reference value, and an secondary PSD can be connected in cascade to the primary PSD, to run detection using the secondary PSD after detecting the signal with the primary PSD.

External reference 10 MHz synchronization

Can be synchronized with the reference frequency of other devices by using an external reference frequency

Synchronizing operation of other devices such as a signal generator allows synchronization to any frequency (can be configured) without having to use an external reference signal (REF IN).

Detection Mode (Dual 1)



External 10 MHz Reference Input

Time Constant

Multi functions in a compact body

Input Connector

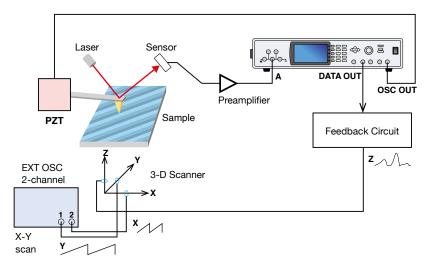
LI5660

Rear

Connector

* Rear panel of LI5655/LI5650/LI5645 looks same but there are differece in specifications.

RS-232, GPIB, LAN, USB


Applications

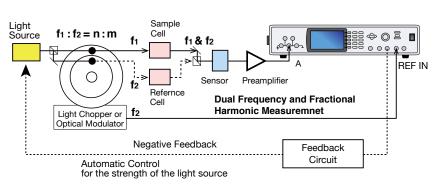
Comprehensive support for measuring very small signals in advanced research

SPM (scanning probe microscope) signal processing

Scanning probe microscopes such as STM (scanning tunnel microscope) and AFM (atomic force microscope) use a nanoscale probe at the tip to scan the surface of a sample. The signal between the probe and the sample is detected to observe the electronic state and structure of the sample surface, as well as its physical and chemical properties. Lock-in amplifiers are used to control the distance between the sample and probe.

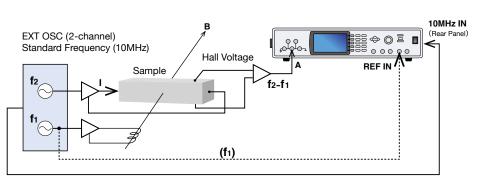
The LI5660/LI5655 can also be used with high resonance frequency cantilever movement in the MHz range, and setting a smaller time constant (from 1 μ s) allows high-speed scanning to generate images in a shorter time. The synchronization filter can drastically reduce phase detection output ripples, resulting in much higher quality images, generated at a faster speed.

Lock-in amplifiers are also used for signal processing such as modulation signal demodulation with KFM (kelvin force microscope) as well as STM and ATM.


Optical transmission level measurement (illuminant fluctuation cancellation)

Using both the simultaneous 2-frequency measurement and fractional harmonic measurement functions allows fluctuation corrections of light sources and other sources using the dual beam method (ratio measurement) with a single LI5660 or LI5655.

Applying negative feedback to the reference cell signal also stabilizes the strength of the light source.


The integral multiple (n), integral inverse (1/m) and fraction (n/m) of the reference signal frequency can be configured, allowing it to be used easily with light chopper frequency ratios. When integral ratios are used, signals cannot be distinguished from harmonic components generated by distortion in the signal, however there is no impact on the harmonics if fraction ratios are used.

The reference 10 MHz synchronization function can also be used to synchronize operation with external signal generators, allowing detection of any two frequencies.

Hall coefficient measurement (difference frequency measurement)

The hall voltage is proportional to the product of two signals (current and magnetic field), and its frequency is the difference frequency (and sum) of the two signals. Synchronizing an external signal source, which generates a current and magnetic field, with the LI5660/LI5655 at an external 10 MHz allows measurement of the difference frequency signal of any two frequencies without having to arrange an external reference signal (difference frequency). (when used with a signal generator with a 2-channel output and frequency reference output) If the original frequency is a integral* ratio, the fractional harmonic measurement function can also be used to measure the difference frequency signal. Either method avoids crosstalk interference from the external reference signal.

Specifications

Measured signal system

Input coupling	 A, A-B: AC/DC switching AC coupling with two-stage cascaded 1st order HPF, HPF fc: 0.1Hz (nominal value) I: AC/DC switching, after converting the voltage C (LI5660 only): AC (Always automatically cancel DC component) HF (LI5660 only): AC (Always automatically cancel DC component) HF (LI5660 only): AC (Always automatically cancel s50 Ω, the AC-couple stage is positioned after the 50 Ω termination one.
Input ground	Float/Connect (to chassis) switching Withstand voltage : \pm 1 Vpk max. (DC+AC) Impedance to chassis: 10 k Ω (float), 11 Ω (connected to the chassis)
Line filter	Through (disabled), fundamental wave rejection (50 Hz or 60 Hz), 2nd order harmonic rejection (100 Hz or 120 Hz), rejection of both fundamental and 2nd order harmonic Attenuation: 20 dB or more (at f ₀)* When using the input C and HF, Line filter is disable regardless of Line filter settings.

Voltage measurement

Input	LI5660	LI5655	LI5	650	LI5645
connector	BNC	BNC (front pa			
nput type	(front panel A, B, C, HF) A, C, HF (single-end), A-B (differential)	A (single-end	l), A-B (differer	ntial)
- requency range	A, A-B, C: 0.5 Hz to 3 MHz HF: 10 kHz to 11 MHz	A, A-B: 0.5 Hz to 3 M	1Hz A,	A-B: nHz to	250 kHz
Sensitivity	A, A-B: 10 nV to 1 V F. S.	(1-2-5 sequer	nce)		
	C: 1 mV to 10 V F. S. (1-2-5 sequence)				
	HF: 1_mV to 1 V F. S.				
/oltage accu	(1-2-5 sequence)				
	LI5660			LI565	5
A, A-B	$\pm 0.5 \%$ (1 kHz, signal leve $\pm 2 \%$ (1 kHz, signal level $\pm 0.5 \%$ (≤ 20 kHz, sensitivit $\pm 1 \%$ (≤ 50 kHz, sensitivit $\pm 2 \%$ (≤ 100 kHz, sensitivit) $\pm 3 \%$ (≤ 1 MHz, sensitivit) $\pm 5 \%$ (≤ 3 MHz, sensitivit) = 100 % full-scale sign	≥ 1 μ V) ^{*1} vity 100 mV to y 100 mV to 1 ity 100 mV to 1 y 100 mV to 1 y 100 mV to 1 hal (sensitivity), c	1 V, at : V)*2 1 V)*2 V)*2 V)*2 V)*2 dynamic r	23 ±5° reserve	
С	 *2 DC coupling, dynamic rese ±0.5 % (≤ 20 kHz) 	rve LOW and ful	I-scale si	gnal	
	±1 % (≤ 50 kHz) ±2 % (≤ 100 kHz) ±3 % (≤ 1 MHz) ±5 % (≤ 3 MHz) 1 V to 10 V sensitivity, wi dynamic reserve LOW	th full-scale si	gnal,		_
HF	\pm 3 % (≤ 1 MHz, input imp \pm 5 % (≤ 3 MHz, input imp \pm 7 % (≤ 10 MHz, input im \pm 14 % (≤ 11 MHz, input in Dynamic reserve LOW, s 1 V, full-scale signal	edance 1 MΩ) pedance 50 Ω npedance 50 Ω	2) 2)		
	LI5650 / LI5645				
А, А-В	$\pm 0.5 \%$ (1 kHz, signal level ≥ 1 mV, at 23 $\pm 5^{\circ}$ C) ¹ $\pm 2 \%$ (1 kHz, signal level ≥ 1 μ V) ⁻¹ $\pm 0.5 \%$ (≤ 20 kHz, sensitivity 100 mV to 1 V at 23 $\pm 5^{\circ}$ C) ² $\pm 1 \%$ (≤ 50 kHz, sensitivity 100 mV to 1 V) ² $\pm 2 \%$ (≤ 100 kHz, sensitivity 100 mV to 1 V) ² $\pm 3 \%$ (≤ 250 kHz, sensitivity 100 mV to 1 V) ² ⁺¹ at least 30 % full-scale signal (sensitivity), dynamic reserve LOW ² DC coupling, dynamic reserve LOW and full-scale signal				
	racy temperature drift				
А, А-В	± 100 ppm / °C (supplem 1 kHz, dynamic reserve LOW, A	ientary value) input, sensitivity	1 V, signal	level 10	10% of F. S
nput impeda					
	LI5660				0 / LI564
А, В С	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		n (suppl	ement	ary valu
HF	1 MΩ (nominal value), 50 pF in (supplementary value) 50 Ω (n	parallel nominal value)			
nput referred	1 · · · · · · · · · · · · · · · · · · ·				
А, А-В	4.5 nV/ _v Hz (supplementa Dynamic reserve LOW, sensiti		s, 1 kHz, i	nput sh	ort
Common-mo	de rejection ratio (CMRR)				
А-В	at least 100 dB AC coupling, 50 Hz to 1 kHz, s LOW and sensitivity 20 mV c				
larmonic dis A, A-B	tortion -80 dBc or less (10 Hz to 5	5 kHz, 2-3rd orc	ler harm	onics.	each ord
,	Dynamic reserve LOW, s	ensitivity 1 V,	signal le	evel 30	0% of F.S
	out voltage (linear operating	range)	1 15655	/ 1 156	50 / 1 159
A, B, A-B	± 3 V (Each terminal voltag Dynamic reserve HIGH, s				50 / LI56 C couplir
С	± 30 V Dynamic reserve HIGH	-			-

Nominal, Typical, Supplement and Approximate values show the supplemental data of this product and these do not guarantee the performance.

	ive maximum input voltage		LI5655	/ LI5650 / LI564	
A, B	AC coupling: 10 Vrms (sin	ne), DC±42 V	_10000	10000 / L1004	
	DC coupling: ±14 V	<i>,,</i>			
С	± 42 V				
HF	± 5 V			_	
Current me	easurement (not equipped	with LI5645)			
Input connector	BNC (Front panel I)				
Input type	Single-end		_		
Frequency range	LI5660	LI565		. (
range	0.5 Hz to maximum values s 3 dB reduction frequency)	snown in the ta	adie deiov	v (nominai values	
	Cs		Convers	sion gain	
	Signal source capacitance connected cable capacitar		0 ⁶) [V/A]	100 M (10 ⁸) [V/A	
			ЛНz	10 kHz	
	150 pF		/Hz	10 kHz	
	1000 pF	150	kHz	1.5 kHz	
	LI5650				
	1 mHz to maximum values s 3 dB reduction frequency)	snown in the ta	adie deiov	v (nominal values	
	Cs		Convers	sion gain	
	Signal source capacitance connected cable capacitar	e + 1 M (10	26) [V/A]	100 M (10 ⁸) [V/A	
	None	100 1	kHz	10 kHz	
	150 pF	250	kHz	10 kHz	
	1000 pF	150	kHz	1.5 kHz	
Current	±1% (nominal value)		i+., 1Λ /-	M \//A at 1 kH=\	
accuracy	At 23 ±5°C, dynamic reserve as well as sensitivity 10 nA (1	100 M V/A at 1	25 Hz), 30) % or more of	
	full-scale sensitivity signal Bo	oth typical valu	ie.		
Sensitivity	100 fA to 1µA full-scale (v 10 fA to 10 nA full-scale (v				
	Both 1-2-5 sequence		(1)		
Current accuracy	± 150 ppm / °C Dynamic reserve LOW, suppl	lementary valu	e for (1 M	$[N/\Delta]$ 1 kHz) and	
temperature drift	(100 M [V/A], 125 Hz)	iennentary valu		[<i>V/A</i>], 1 K12/ and	
Input referred	150 fA/√Hz (1M [V/A], 1kH	lz)			
noise	15 fA/ _{vHz} (100M [V/A], 1 Both supplementary value				
Input	1 kΩ (1M [V/A])				
impedance	100 kΩ (100M [V/A]) Both supplementary value				
Maximum input	±3 µA				
operating range)	DC coupling, dynamic reserve HIGH, conversion gain 1 M [V/A] sensitivity 1 µA				
	sity measurement				
Sensitivity	LI5660 / LI5655 / LI5650				
,	Voltage: 20 nV/ _v Hz to 1 V	//√Hz (A, /	А-B)		
	1 mV/√Hz to 10 \ 1 mV/√Hz to 1 V/				
	Current: 1 pA/ \sqrt{Hz} to 1 V/	A/√Hz (wit	h 1 M [V/	'A])	
	100 fA/ $_{\rm V}$ Hz to 10 nA/ $_{\rm V}$ Hz (with 100 M [V/A])				
	100 fA/√Hz to 10) nA/√Hz (wit		* L 15660 only	
	100 fA/√Hz to 10 All in 1-2-5 sequence) nA/√Hz (wit		* LI5660 only	
	100 fA/√Hz to 10) nA/√Hz (wit			
Phone or	100 fA/,√Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,√Hz to 1 V/) nA/√Hz (wit /√Hz (1-2-5 se			
	All in 1-2-5 sequence LI5645 Voltage: 20 nV//Hz to 1 V/) nA/√Hz (wit /√Hz (1-2-5 se			
Phase sensitive	100 TA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650	0 nA/√Hz (wit /√Hz (1-2-5 se :tion	equence)	
Phase sensitive detector	All in 1-2-5 sequence LI5645 Voltage: 20 nV//Hz to 1 V/	0 nA/√Hz (wit /√Hz (1-2-5 se :tion	equence)	
Phase sensitive	100 fA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D	vnA/√Hz (wit √/Hz (1-2-5 se stion ual PSD (prim	equence hary PSD	secondary PSD;	
Phase sensitive detector	100 fA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645	v nA/√Hz (wit √Hz (1-2-5 se tion ual PSD (prim 1 PSD (prim	equence eary PSD ary PSD)) secondary PSD;	
Phase sensitive detector (PSD) PSD settings items Detection	100 fA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ , Rsin θ), D LI5645 2 phase (Rcos θ , Rsin θ), Sensitivity, time constant,	√Hz (1-2-5 so √Hz (1-2-5 so tion ual PSD (prim 1 PSD (prim , phase, XY c Measu	equence ary PSD ary PSD) ffset, dy urement i) secondary PSD; namic reserve frequency	
Phase sensitive detector (PSD) PSD settings items	100 FA/, Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/, Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), Sensitivity, time constant, Detection mode	//Hz (1-2-5 so //Hz (1-2-5 so tion ual PSD (prima , phase, XY co Meass Primary P	equence hary PSD ary PSD) ffset, dy urement f SD S) secondary PSD, namic reserve frequency econdary PSD*1	
Phase sensitive detector (PSD) PSD settings items Detection	100 fA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ , Rsin θ), D LI5645 2 phase (Rcos θ , Rsin θ), Sensitivity, time constant,	√Hz (1-2-5 so √Hz (1-2-5 so val PSD (prim 1 PSD (prim phase, XY c Meass Primary P Fundamen Fraction Hari	ary PSD ary PSD) iffset, dy urement f SD S tal/ nonic) secondary PSD namic reserve frequency econdary PSD ^{*1} None	
Phase sensitive detector (PSD) PSD settings items Detection	100 FA/, Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/, Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), Sensitivity, time constant, Detection mode	//Hz (1-2-5 so //Hz (1-2-5 so etion 1 PSD (prima , phase, XY c Mease Primary P Fundamen Fraction Har Fundamen	ary PSD ary PSD iffset, dy urement 1 SD S tal/ monic tal/) secondary PSD namic reserve frequency econdary PSD*1 None Fundamental/	
Phase sensitive detector (PSD) PSD settings items Detection	100 FA/, Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/, Hz to 1 V/ cmsitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), Sensitivity, time constant, Detection mode SINGLE*2	1 PSD (prim val PSD (prim phase, XY c Primary P Fundamen Fraction Harn Fraction Harn	ary PSD ary PSD ffset, dy arement 1 SD S tal/ nonic tal/ nonic) secondary PSD namic reserve frequency econdary PSD*1 None Fundamental/ Harmonic	
Phase sensitive detector (PSD) PSD settings items Detection	100 FA/, Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/, Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), Sensitivity, time constant, Detection mode SINGLE*2 DUAL1*1*3 DUAL2*1*4 CASCADE*1*5	1 PSD (prim val PSD (prim phase, XY c Primary P Fundamen Fraction Harn Fraction Harn	ary PSD ary PSD) ffset, dy urement f SD S tal/ nonic tal/ nonic uency Se) secondary PSD, namic reserve frequency econdary PSD ^{*1} None Fundamental/ Harmonic scondary frequency	
Phase sensitive detector (PSD) PSD settings items Detection	100 FA/, Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/, Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), Sensitivity, time constant, Detection mode SINGLE*2 DUAL1*1*3 DUAL2*1*4 CASCADE*1*5 *1 Not equipped with LI5645	VHZ (WIT VHZ (1-2-5 so vition 1 PSD (primu , phase, XY c Mease Primary P Fundamen Fraction Harr Fundamen Fraction Harr Primary frequ Primary frequ	ary PSD ary PSD) ffset, dy urement f SD S tal/ nonic tal/ nonic uency Se) secondary PSD, namic reserve frequency econdary PSD ^{*1} None Fundamental/ Harmonic scondary frequency	
Phase sensitive detector (PSD) PSD settings items Detection	100 FA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), Sensitivity, time constant, Detection mode SINGLE*2 DUAL1*1*3 DUAL2*1*4 CASCADE*1*5 *1 Not equipped with LI5645 *2 2-phase detection is at one frequ *3 The fundamental and a harmonic con	AA//Hz (witt //Hz (1-2-5 so //Hz (1-2-5 so)//Hz (1-2-5 so)//Hz (1-2-5)))))))))))))))))))))))))))))))))))	ary PSD ary PSD) fffset, dy arement f SD S tal/ monic tal/ monic uency Se uency Se uency Se	secondary PSD namic reserve frequency econdary PSD*1 None Fundamental/ Harmonic ccondary frequency econdary frequency	
Phase sensitive detector (PSD) PSD settings items Detection	100 fA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ , Rsin θ), D LI5645 2 phase (Rcos θ , Rsin θ), Sensitivity, time constant, Detection mode SINGLE ^{*2} DUAL1 ^{*1 *3} DUAL2 ^{*1 *4} CASCADE ^{*1 *5} ^{*1} Not equipped with LI5645 *2 2-phase detection is at one frequency com are measured simultaneously.	AVA/VHz (with VHz (1-2-5 second val PSD (prime) PSD (prime) PSD (prime) Primary P Fundamene Fraction Harr Primary freque Primary freq	ary PSD ary PSD) ffset, dy urement 1 SD S tal/ monic tal/ monic uency Se uency Se uency Se uency Se) secondary PSD; namic reserve frequency econdary PSD'1 None Fundamental/ Harmonic scondary frequency scondary frequency rondary frequency scondary frequency	
Phase sensitive detector (PSD) PSD settings items Detection	100 FA/, Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/, Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ , Rsin θ), D LI5645 2 phase (Rcos θ , Rsin θ), Sensitivity, time constant, Detection mode SINGLE*2 DUAL1*1*3 DUAL2*1*4 CASCADE*1*5 *1 Not equipped with LI5645 *2 >-phase detection is at one frequency com are measured simultaneously. *5 The secondary PSb is connected in cession	VHZ (VHZ (WIT VHZ (1-2-5 sc vition Ual PSD (primu- phase, XY c Primary P Fundamen Fraction Harr Fundamen Fraction Harr Primary frequ Primary frequ Primary frequ ency. mponents (primary a scade with the primary a	equence ary PSD ffset, dy iffset, dy irement i SD S tal/ monic tal/ monic tal/ ency Se uency Se uency Se uency Se) secondary PSD; namic reserve frequency econdary PSD'1 None Fundamental/ Harmonic scondary frequency scondary frequency rondary frequency scondary frequency scondary frequency	
Phase sensitive detector (PSD) PSD settings items Detection	100 fA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ , Rsin θ), D LI5645 2 phase (Rcos θ , Rsin θ), Sensitivity, time constant, Detection mode SINGLE ^{*2} DUAL1 ^{*1 *3} DUAL2 ^{*1 *4} CASCADE ^{*1 *5} ^{*1} Not equipped with LI5645 ^{*2} 2-phase detection is at one frequ *3 The fundamental and a harmonic con *4 Two independent frequency com are measured simultaneously. *5 The secondary PSD is connected in ca the primary PSD, its further detected At least 100 dB (suppleme	AA//Hz (with the primary fraction Harr Primary frequency.	equence ary PSD ary PSD) iffset, dy urrement 1 SD S tal/ monic tal/ monic c uency Se uency Se uency Se uency Se uency Se uency Se uency Se uency Se) secondary PSD; namic reserve frequency econdary PSD*1 None Fundamental/ Harmonic ccondary frequency econdary frequency econdary frequency econdary frequency econdary frequency ter a signal is detected by	
Phase sensitive detector (PSD) PSD settings items Detection mode	100 fA/,/Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,/Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ , Rsin θ), D LI5645 2 phase (Rcos θ , Rsin θ), Sensitivity, time constant, Detection mode SINGLE ^{*2} DUAL1 ^{*1 *3} DUAL2 ^{*1 *4} CASCADE ^{*1 55} ^{*1} Not equipped with LI5645 *2 2-phase detection is at one frequ *3 The fundamental and a harmonic con *4 Two independent frequency com are measured simultaneously. *5 The secondary PSD is connected in ca the primary PSD, it is further detected At least 100 dB (suppleme LOW/MEDIUM/HIGH 3-pc	AA//Hz (with the primary fraction Harr Primary frequency.	equence ary PSD ary PSD) iffset, dy urrement 1 SD S tal/ monic tal/ monic c uency Se uency Se uency Se uency Se uency Se uency Se uency Se uency Se) secondary PSD; namic reserve frequency econdary PSD*1 None Fundamental/ Harmonic ccondary frequency econdary frequency econdary frequency econdary frequency econdary frequency ter a signal is detected by	
Phase sensitive detector (PSD) PSD settings items Detection mode	$\begin{array}{c} 100 \ \text{FA}/\text{Hz} \ \text{to 10} \\ \text{All in 1-2-5 sequence} \\ \hline \text{LI5645} \\ \hline \text{Voltage: 20 nVl/Hz} \ \text{to 1 Vl} \\ \hline \text{ensitive detector sec} \\ \hline \text{LI5660 / LI5655 / LI5650} \\ \text{2 phase (Rcos \theta, \text{Rsin } \theta), \text{D} \\ \hline \text{LI5645} \\ \text{2 phase (Rcos \theta, \text{Rsin } \theta), \text{D} \\ \hline \text{LI5645} \\ \hline \text{2 phase (Rcos \theta, \text{Rsin } \theta), \text{Sensitivity, time constant,} \\ \hline \hline \text{Detection mode} \\ \hline \text{SINGLE'2} \\ \hline \text{DUAL1'1'3} \\ \hline \text{DUAL2'1'4} \\ \hline \text{CASCADE'1'5} \\ \hline \text{'1 Not equipped with LI5645} \\ \hline \text{'2 2-phase detection is at one frequ '3 The fundamental and harmonic come are measured simultaneously. '5 The secondary PSD is connected in cathering PSD, its further detected \\ \hline \text{At least 100 dB (suppleme LOW/MEDIUM/HIGH 3-pc and secondary PSD)} \\ \hline \end{array}$	AA//Hz (with the primary fraction Harr Primary frequency.	equence ary PSD ary PSD) iffset, dy urrement 1 SD S tal/ monic tal/ monic c uency Se uency Se uency Se uency Se uency Se uency Se uency Se uency Se) secondary PSD; namic reserve frequency econdary PSD*1 None Fundamental/ Harmonic ccondary frequency econdary frequency econdary frequency econdary frequency econdary frequency ter a signal is detected by	
Phase sensitive detector (PSD) PSD settings items Detection mode	$\begin{array}{c} 100 \ \text{FA}/\text{Hz} \ \text{to 10} \\ \text{All in 1-2-5 sequence} \\ \hline \text{LI5645} \\ \hline \text{Voltage: 20 nVl/Hz} \ \text{to 1 Vl} \\ \hline \text{ensitive detector sec} \\ \hline \text{LI5660 / LI5655 / LI5650} \\ 2 \ \text{phase} (\text{Rcos } \theta, \text{Rsin } \theta), \text{D} \\ \hline \text{LI5645} \\ 2 \ \text{phase} (\text{Rcos } \theta, \text{Rsin } \theta), \text{Sensitivity, time constant,} \\ \hline \hline \text{Detection mode} \\ \hline \text{SINGLE'2} \\ \hline \text{DUAL1'1'3} \\ \hline \text{DUAL2'1'4} \\ \hline \text{CASCADE'1'5} \\ \hline \text{'1 Not equipped with LI5645} \\ \hline '2 -phase detection is at one frequ '3 The fundamental and a harmonic com '4 Two independent frequency com are measured simultaneously. \\ \hline \text{'5 The secondary PSD is connected in cathering the primary PSD, it is further detected \\ At least 100 dB (suppleme LOW/MEDIUM/HIGH 3-pc and secondary PSD) \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	VHZ (VHZ (WIT VHZ (1-2-5 sc vition Ual PSD (primu- phase, XY c Primary P Fundamen Fraction Harr Fundamen Fraction Harr Fundamen Primary frequ Primary frequ Primary frequ Primary frequ Scade with the primu by the secondary PS entary value) point switching	equence hary PSD fffset, dy urement f SD S tal/ monic tal/ monic uency Se uency Se Se uency Se uency Se uency S) secondary PSD; namic reserve frequency econdary PSD*1 None Fundamental/ Harmonic ccondary frequency econdary frequency econdary frequency econdary frequency econdary frequency ter a signal is detected by	
Phase sensitive detector (PSD) PSD settings items Detection mode Dynamic reserve Time	100 FA/,Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), Sensitivity, time constant, Detection mode SINGLE*2 DUAL1*1*3 DUAL2*1*4 CASCADE*1*5 *1 Not equipped with LI5645 *2 2-phase detection is at one frequency com *3 The fundamental and a harmonic cor *4 Two independent frequency com *5 The secondary PSD is connected in ca the primary PSD, its further detected At least 100 dB (supplement LOW/MEDIUM/HIGH 3-pc and secondary PSD LI5660 / LI5655 Time constant: 1 µs to 50 Attenuation slope: 6, 12, **	AA/√Hz (with a straight of the secondary of the second	equence ary PSD ffset, dy irement i SD S tal/ monic tal/ monic iency Se iency Se iency Se iency Se iency Se iency Se iency Se iency Se iency Se) secondary PSD; namic reserve frequency econdary PSD*1 None Fundamental/ Harmonic ccondary frequency econdary frequency econdary frequency econdary frequency econdary frequency ter a signal is detected by	
Phase sensitive detector (PSD) PSD settings items Detection mode Dynamic reserve Time constant	100 FA/,Hz to 10 All in 1-2-5 sequence LI5645 Voltage: 20 nV/,Hz to 1 V/ ensitive detector sec LI5660 / LI5655 / LI5650 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), D LI5645 2 phase (Rcos θ, Rsin θ), Sensitivity, time constant. Detection mode SINGLE*2 DUAL1*1*3 DUAL2*1*4 CASCADE*1*5 *1 Not equipped with LI5645 *2 -phase detection is at one frequ *3 The fundamental and a harmonic co *4 Two independent frequency compare measured simultaneously. *5 The secondary PSD is is further detected At least 100 dB (supplement LOW/MEDIUM/HIGH 3-pc and secondary PSD LI5660 / LI5655 Time constant: 1 µs to 50	AV/VHz (witt VHz (1-2-5 so vition 1 PSD (prim- phase, XY c Mease Primary P Fundamen Fraction Harr Frandaren Fraction Harr Primary frequ Primary frequ Primary frequ ponents (primary a usscade with the prima by the secondary PS entary value) pint switching ks (1-2-5 se 18. 24 dB/oct	equence hary PSD ffset, dy urement 1 SD S tal/ monic Lency Se uency Se uenc) secondary PSD; namic reserve frequency econdary PSD*1 None Fundamental/ Harmonic ccondary frequency econdary frequency econdary frequency econdary frequency econdary frequency ter a signal is detected by	

Synchronous filter	On/Off
Phase noise	LI5660 / LI5655
	0.001° rms (at 1 kHz, attenuation slope : 18 dB/oct or more) 0.003° rms(at 100 kHz, attenuation slope : 12 dB/oct or more) 0.01° rms (at 3 MHz, attenuation slope : 12 dB/oct or more) Supplementary value; reference signal is external sine wave 1 Vrms, time constant 100 ms, synchronization filter off
	LI5650 / LI5645
	0.001° rms (at 1 kHz, attenuation slope : 18 dB/oct or more) 0.003° rms(at 100 kHz, attenuation slope : 12 dB/oct or more) 0.01° rms (at 250 kHz, attenuation slope : 12 dB/oct or more) Supplementary value; reference signal is external sine wave 1 Vrms, time constant 100 ms, synchronization filter off
Phase	LI5660 / LI5655
temperature drift	$\pm 0.01^{\circ}/^{\circ}C (100 \text{ Hz} \le \text{frequency} \le 10 \text{ kHz})$ $\pm 0.03^{\circ}/^{\circ}C (10 \text{ kHz} < \text{frequency} \le 100 \text{ kHz})$ $\pm 0.2^{\circ}/^{\circ}C (100 \text{ kHz} < \text{frequency} \le 3 \text{ MHz})$ Supplementary value when input signal (A connector) and external reference signal (REF IN connector) are both Sine wave 1Vrms.
	LI5650 / LI5645
	$\pm 0.01^{\circ}/~^{\circ}C (100 Hz \le frequency \le 10 kHz)$ $\pm 0.03^{\circ}/~^{\circ}C (10 kHz < frequency \le 100 kHz)$ $\pm 0.2^{\circ}/~^{\circ}C (100 kHz < frequency \le 250 kHz)$ Supplementary value when input signal (A connector) and external reference signal (REF IN connector) are both Sine wave 1Vrms.

Reference signal system

Reference signal source	 REF IN: the external reference signal is used as the primary PSD's reference frequency at SINGLE, DUAL1*, and DUAL2*, and is used as the secondary one at CASCADE* INT OSC: internal oscillator
	• SIGNAL: measurement signal (cannot be used when input HF is selected)
	* Except for LI5645

• External reference signal

Waveform	SIN POS, TTL POS, TTL NEG					
Input connector	BNC (Front panel REF IN)					
Input impedance	1 MΩ (nomi	1 MΩ (nominal value), 100 pF in parallel (supplementary value)				
Input voltage		20 Vp-p (sine				
range	TTL: 0 to 5	V, High 2.6 V	or more, Low 0.8	V or less (square)		
Pulse width (square wave)	40 ns or mo	ore (both High	n level and Low le	vel)		
Non-destructive maximum input voltage	±15 V					
Synchronization	LI5660					
frequency range	Signal input	Detection mode	External reference signal	Synchronization frequency range		
	A A-B C I	SINGLE DUAL1 DUAL2 CASCADE	SIN POS TTL POS TTL NEG	0.3 Hz to 3.2 MHz		
	HF	SINGLE DUAL1 DUAL2	TTL POS TTL NEG	8 kHz to 11.5 MHz		
		CASCADE	SIN POS TTL POS TTL NEG	0.3 Hz to 3.2 MHz		
LI5655						
	Signal input	Detection mode	External reference signal	Synchronization frequency range		
	A A-B I	SINGLE DUAL1 DUAL2 CASCADE	SIN POS TTL POS TTL NEG	0.3 Hz to 3.2 MHz		
	LI5650					
	Signal input	Detection mode	External reference signal	Synchronization frequency range		
	A	SINGLE	SIN POS	0.3 Hz to 260 kHz		
	A-B I	DUAL1 DUAL2 CASCADE	TTL POS TTL NEG	0.5 mHz to 260 kHz		
	LI5645					
	Signal input	Detection mode	External reference signal	Synchronization frequency range		
	A		SIN POS	0.3 Hz to 260 kHz		
	A-B	SINGLE	TTL POS TTL NEG	0.5 mHz to 260 kHz		
Synchronization time	2 periods +	50 ms (supp	lementary value)			
Frequency display resolution	6 digits (0.1 mHz at less than 100 Hz)					
Frequency measure -ment accuracy	± (40 ppm + 1 count)					

Internal Oscillator

Frequency	Oscillates two independent frequencies (primary frequency and secondary frequency) (detection mode DUAL2 ⁻¹ , CASCADE ⁻¹)
(and)	• Setting range: LI5660 / LI5655 0.3 Hz to 3.2 MHz (A, A-B, C ⁺ 2,I) 8 kHz to 11.5 MHz (HF ⁺²)
secondary	LI5650 / LI5645 0.5 mHz to 260 kHz
	 Resolution: 6 digits (0.1 m Hz, less than 100 Hz) Accuracy: ± 40 ppm
	*1 Except for LI5645 *2 LI5660 only
Reference frequency source	Internal / external switching

Reference frequer Frequency range	10 MHz ± 0	.2 %		
Waveform		or Square Wave (du	uty 45 to 55	5%)
Signal level	0.5 Vp-p to 5 Vp-p			
Non-destructive maximum	10 Vp-p			
input voltage	io vp-p			
Input	1 kΩ (nomin	al value)		
impedance Input coupling	AC			
	-	ax. (DC+AC) (Allow	able voltad	e to around)
Sine wave output	F			,,
Frequency	Primary frec	uency (with detect uency/secondary* _2*, CASCADE*, se	frequency	
Amplitude Amplitude	0 to 10.00 mVrms / 0 to 100.0 mVrms / 0 to 1.000 Vrms When > 3.2 MHz, 0 Vrms regardless of the setting (LI5660/LI5655 only LI5660 / LI5655 LI5650 / LI5645			
accuracy	$\begin{array}{c} \pm(2\% \ \text{of setting} + 1 \ \text{mV}) \leq 20 \ \text{kHz} \\ \pm(3\% \ \text{of setting} + 1 \ \text{mV}) \leq 100 \ \text{kHz} \\ \pm(4\% \ \text{of setting} + 2 \ \text{mV}) \leq 1 \ \text{MHz} \\ \pm(7\% \ \text{of setting} + 5 \ \text{mV}) \leq 3.2 \ \text{MHz} \end{array}$			
Maximum output current	± 15 mA			
Output	50 Ω (nomir	al value)		
impedance				
Harmonic distortion (Output voltage	-80 dBc or les	s (20 Hz ≤ frequency ≤	5 kHz no k	ad 2nd to 5th order
setting 1 Vrms, supplementary value)	-70 dBc or les -60 dBc or les	s (5 kHz < frequency ₌ s (100 kHz < frequency s (1 MHz < frequency	≤ 100 kHz, no y ≤ 1 MHz, 5	o load, 2nd to 5th order 0 Ω, 2nd to 3rd order)
	-70 dBc or les		≤ 100 kHz, no	bad, 2nd to 5th order) bload, 2nd to 5th order 50Ω , 2nd to 3rd order
Square wave outp			ion	
Frequency	Primary frec	uency (with detect uency/secondary 2*, CASCADE*, sel	frequency	
Signal level	±8 mA max.	3 V, nominal value a . (supplementary va .2 MHz, Output lev	alue)	
Harmonic measur	ement			(LIS660/LIS655 011)
Detection mode SINGLE	The primary fre n range (har	quency to the PSD is n monic) 1 to 63 b harmonic) 1 to 63		ference signal frequency
Detection mode DUAL1 (Except for LI5645)	The primary frequency to the primary PSD is n/m times of the reference signal frequency. The secondary frequency to the secondary PSD is n times of the reference signal frequency. n PRI range (harmonics number of primary PSD) 1 to 63 m PRI range (sub harmonics number of primary PSD) 1 to 63			
		(harmonics number o		
Allowable frequency	Reference signal	Fundamen		Harmonic
range of	source	frequency ra	inge	frequency range
Harmonic	REF IN	Synchronization frequ	uency range	Same as at left
measurement		to external referen	<u> </u>	Came as at left
	INT OSC	Internal oscil frequency settin		Same as at left
	SIGNAL	Synchronization f to external referer	requency	Regardless of n, m settings, always operates at n = 1 and m = 1
Phase adjustment	–180.000° t	o +179.999° (resolu	ution 0.001	°)
range Orthogonality		better (supplement		
Phase accuracy	± 0.001 Or LI5660 / LI5		LI5650 / L	.15645
	±1° (DC coupl			upling, ≤ 10 kHz)
		ing, ≤ 100 kHz)		upling, ≤ 100 kHz)
	±5° (DC coupl		±5° (DC co	upling, ≤ 250 kHz)
		oling, ≤ 3 MHz)		
		ary value; at Sine v V) and external re		
Arithmetic p		,		
Offset		-	solution 0	001%)
adjustment	X, Y: sensitivity of ± 105% (resolution 0.001%) Both of primary PSD and secondary PSD* can be set * Except for LI5645			
EXPAND	Y:1, 10, 100			,
	 Apparent se 	SD and secondary F ensitivity (signal full- when normalize or r	scale) is 1 /	EXPAND magnificatio
Normalize				lue) x 100
Normalize (normalize calculation not available or select from right) We han detection mode is SINGLE, DUAL1*, DUAL2*, the above measurement value = primary PSD output (X or when detection mode is CASCADE*, the above measurent value = secondary PSD output (X or R)			ty) × 100 1*, DUAL2*, PSD output (X or R	

Ratio	$ \begin{array}{l} \mbox{Ratio of measured value A and standard value B ratio = K \times A \div B \\ \mbox{K:} & 0.1 \mbox{ to } 10 \mbox{ (resolution 0.00001)} \\ \mbox{A, B: Select from a combination of the below} \end{array} $			
	A (measured value)	B (standard value)	Detection mode	
	Primary PSD	AUX IN 1		
	output (X, Y, R) /	Measurement value	SINGLE	
	Sensitivity	/ 10 V		
	Primary PSD output (X, Y, R) / Sensitivity	Secondary PSD X output / Sensitivity	DUAL1* DUAL2*	
	Secondary PSD output (X, Y, R) / Sensitivity	AUX IN 1 Measurement value / 10 V	CASCADE*	
	,	ate of B is 10 k sample bansion or normalizing	e/s * Except for LI5645 or ratio arithmetic	

Measured value output and display

Parameter				
Output/	Detection mode			
Display	SINGLE	DUAL1*, DUAL2*, CASCADE*		
DATA1	X, R, AUX IN 1, NOISE	Xp, Rp, Yp, <i>θ</i> p, Xs, Rs, AUX IN 1, NOISE		
DATA2	Y, <i>θ</i> , AUX IN 1, AUX IN 2	Yp, <i>θ</i> p, Xs, Rs, Ys, <i>θ</i> s, AUX IN 1, AUX IN 2		
DATA3	X, R	Xp, Rp, Yp, θ p, Xs, Rs		
DATA4	Υ, θ	Yp, θp, Xs, Rs, Ys, θs		
Remarks X, Y, R, θ suffix	n: harmonic (At harmonic value settings, n as a suffix. Ex.: Xn)	p: primary ditector s: secondary ditector n: harmonic (At harmonic value settings, n as a suffix. Ex.: Xpn)		
* Except for LI5645				
Analog output				
Full scale voltage + 10 V (bipolar signal) +10 V (unipolar signal)				

± 10 V (bipolar signal) , +10 V (unipolar signal)
± 12 V (no-load)
± 10 mA
470 Ω (nominal value)
\pm (0.3% + 10 mV) to measurement value
LI5660 / LI5655
DATA OUT 1/DATA OUT2 (Front panel) 312.5 k sample/s. DATA OUT 3/DATA OUT4 (Rear panel) 1.5625 M sample/s.
LI5650 / LI5645
DATA OUT 1/DATA OUT2 (Front panel) 156.25 k sample/s. DATA OUT 3/DATA OUT4 (Rear panel) 781.25 k sample/s.
Normal: show the measured values (DATA1, DATA2) and key settings Large: enlarged display the measured values (DATA1, DATA2) Fine: Show the measured values (DATA1, DATA2, DATA3, DATA4) and advanced settings On Normal and Large measurement screens, displays measured values as bar graphs as well as numerical values.

Parameter	Numeric display		Measurement value for the full scale voltage of
	Range	Resolution	the analog output
Х, Ү	Sensitivity / EXPAND (±120%)	6 digits, at full-scale sensitivity	± sensitivity / EXPAND ratio
R	Sensitivity / EXPAND (0 to 120%)	6 digits, at full-scale sensitivity	Sensitivity / EXPAND ratio
θ	-180.000 to +179.999 °	0.001 °	± 180 °
NOISES (Noise density)	Sensitivity 0 to 120 %	6 digits, at sensitivity F. S.	Sensitivity
AUX IN 1, 2	± 12 V	0.001 V	± 10 V
Ratio	± 2.4	0.00001	± 2
Normalize %	± 240 %	0.001 %	± 200 %
Normalize % of full-scale	± 120 % of F.S.	0.001 % of F.S.	± 100 % of F.S.
Normalize dB	± 120 dB	0.001 dB	± 100 dB

Monitor output

Monitor signal	Phase sensitive detector input signal	
Maximum output	Maximum output voltage \pm 3 V (no-load), maximum output current \pm 20 mA	
Output impedance	50 Ω (nominal value)	

Automatic setting items

	<u> </u>
Measurement	Perform the following items "time constant", "sensitivity", "phase"
Time constant	Set the time constant and attenuation slope corresponding to the frequency of the reference signal.
Sensitivity	Set the sensitivity , and dynamic reserve according to the input signal.
Phase	Set the phase shift value as Y and phase output to a zero
Offset	Set each offset value, X and Y outputs to a zero

NF Corporation

nbn Austria GmbH Riesstraße 146, 8010 Graz

Head Office

6-3-20 Tsunashima Higashi, Kohoku-ku, Yokohama 223-8508, Japan

http://www.nfcorp.co.jp/english/

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.

Auxiliary input (DC voltage measurement)

Number of channels	2
Maximum allowable input voltage	(linear operating range) ± 12 V
Non-destructive maximum input voltage	± 42 V
Input impedance	1 M Ω (nominal value), 50 pF in parallel (supplementary value)
Voltage measurement accuracy	\pm (0.3% + 10 mV), when the input ground is equal to the chassis potential
Frequency bandwidth	Highest: 5 kHz (-3 dB) (supplementary value)
Sampling rate	Highest: 125 k sample / s
Floating characteristics	Signal Ground Maximum voltage to ground (non-destructive): ± 42 Vpk max. (DC+AC) Ground impedance: 1 MΩ (nominal value) Signal Maximum voltage to ground: ± 42 Vpk max. (DC+AC)

Auxiliary output (DC voltage output)

Number of channels	2
Output voltage range	± 10.500 V (resolution 0.001 V)
Maximum output current	± 5 mA
Output impedance	1 kΩ (nominal value)
Output voltage accuracy	± (0.3% + 10 mV), at no load

Data Memory

Record data	For each sample data, select arbitrary up to five words from the	
	recorded data	
Recording	Buffer 1, 2: 16 to 8192 sample	
capacity	Buffer 3: 16 to 65536 sample (FIFO)	
Trigger Signal	Internal timer/External trigger/Remote control commands/Manual trigger 1 sample recorded when trigger signal is received	
Sampling	LI5660 / LI5655	
interval	Internal timer Range: 1.92 μs to 20 s, repeated at equal intervals, resolution: 640 ns, 6 digits max. External trigger/Remote control commands/Manual trigger Range: ≥ 2.6 μs arbitrary intervals, trigger jitter 640 ns (nominal value) LI5660 / LI5645	
	Internal timer Range: 9.6 μs to 20 s, repeated at equal intervals, resolution: 640 ns, 6 digits max. External trigger/Remote control commands/Manual trigger Range: ≥ 2.6 μs arbitrary intervals, trigger jitter 640 ns (nominal value)	
External trigger	Signal level: TTL (0 to 5 V, High 2.6 V or more, Low 0.8 V or less), Minimum pulse width: 500 ns (both high and low level) Effective edge: Falling, input impedance: 10 kΩ (nominal value) Non-destructive maximum input voltage: \pm 15 V	
Trigger delay time	0 to 100 s (resolution: 640 ns, 6 digits max.)	
Remote control interface		
USB	USBTMC, USB 2.0 High speed	
RS-232	4800 / 9600 / 19200 / 38400 / 57600 / 115200 / 230400 bps	
GPIB	Compliance standards IEEE 488.1, IEEE 488.2	

LAN 10BASE-T / 100BASE-TX, TCP/IP

General specification

Display	4.3-inch WQVGA, color LCD
Power supply	AC 100 V ± 10% / 120 V ± 10% / 230 V+10%, - 14% However 250 V or less
	50 Hz / 60 Hz \pm 2 Hz, power consumption 75 VA or less, over voltage category II
Operating	0 to +40°C
temperature /	5 to 85% RH, absolute humidity 1 to 25 g / m ³ ,
humidity range	no condensation
Warm-up time	30 minutes
Setting memory	9 sets
Resume	Return to the last settings at power-on state
Power output	± 15 V (nominal value)
for Preamp	100 mA max. (rear panel PREAMP POWER)
External dimensions (mm)	430 (W) \times 88 (H) \times 400 (D) Excluding protrusions
Weight	Approx. 7.5 kg Except for accessories

Accessories and options

Accessories	Instruction manual, CD-ROM (remote control driver etc.) power cord set (3-pin, 2 m) fuse (time lag, 1.0 A / 250 V, φ 5.2 × 20 mm), protective cap [*] (for current input terminal)
	* Except for LI5645
Option	PA-001-2779 EIA rack-mount kit
	PA-001-2780 JIS rack-mount kit

The contents of this catalog are current as of Aug 7, 2019. • External view and specifications are subject to change without prior notice. • Please check the latest specifications, prices, and lead time for purchase. • The company names and product names described here are trademarks or registered trademarks of respective owners.

+43 316 40 28 05

v27.01.23