




## **Current Transducer SIGNALTEC CT 2000** (IN 2000-S/SP2)

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

# 



#### **Features**

- · Closed loop (compensated) current transducer using an extremely accurate zero flux detector
- · Electrostatic shield between primary and secondary circuit
- · 9-pin D-Sub male secondary connector
- · Status signal to indicate the transducer state
- LED indicator confirms normal operation
- Metal housing to improve immunity to EMC & power • dissipation
- Operating temperature -40 °C to 85 °C.

#### **Special feature**

 Customer label dedicated to "Signaltec" (Product name: CT 2000).

#### **Advantages**

- Very high accuracy
- Excellent linearity
- Extremely low temperature drift
- Wide frequency bandwidth
- High immunity to external fields
- No insertion losses
- Very low noise on output signal
- · Low noise feedback to primary conductor.

#### N° 97.N6.69.002.0

8February2021/Version 0

nbn Austria GmbH Riesstraße 146, 8010 Graz

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.

## Applications

- · Feed back element in high performance gradient amplifiers for MRI
- · Feedback element in high-precision, high-stability power supplies
- Calibration unit •
- Energy measurement
- Medical equipment. •

#### Standards

- EN 61000-6-2: 2005
- EN 61000-6-3: 2007
- EN 61010-1: 2010.

#### Application Domain

- Industrial
- Laboratory
- Medical.

Page 1/9





## Insulation coordination

| Parameter                                           | Symbol          | Unit | Value | Comment                                                                  |
|-----------------------------------------------------|-----------------|------|-------|--------------------------------------------------------------------------|
| Rated insulation RMS voltage, basic insulation      | II              | v    | 1000  | IEC 61010-1 conditions<br>- over voltage cat III<br>- pollution degree 2 |
| Rated insulation RMS voltage, reinforced insulation | U <sub>Nm</sub> | v    | 1000  | IEC 61010-1 conditions<br>- over voltage cat III<br>- pollution degree 2 |
| PMS voltage for AC inculation test 50 Hz 1 min      | U <sub>d</sub>  | kV   | 6     | Between primary and secondary + shield                                   |
| RMS voltage for AC insulation test, 50 Hz, 1 min    |                 | V DC | 100   | Between secondary and test winding                                       |
| Impulse withstand voltage 1.2/50 µs                 | $U_{ m Ni}$     | kV   | 12.8  |                                                                          |
| Clearance (pri sec.)                                | d <sub>ci</sub> | mm   | 21    | Shortest distance through air                                            |
| Creepage distance (pri sec.)                        | d <sub>Cp</sub> | mm   | 22    | Shortest path along device body                                          |
| Comparative tracking index                          | CTI             |      | 250   |                                                                          |

## **Environmental and mechanical characteristics**

| Parameter                     | Symbol         | Unit | Min | Тур | Мах | Comment               |
|-------------------------------|----------------|------|-----|-----|-----|-----------------------|
| Ambient operating temperature | T <sub>A</sub> | °C   | -40 |     | 85  |                       |
| Ambient storage temperature   | $T_{\rm Ast}$  | °C   | -40 |     | 85  |                       |
| Relative humidity             | RH             | %    | 20  |     | 80  |                       |
| Dimensions                    |                |      |     |     |     | See drawing in page 8 |
| Mass                          | т              | kg   |     | 4.2 |     |                       |

8February2021/Version 0

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.



Page 2/9



## **Electrical data**

At  $T_A = 25 \text{ °C}$ ,  $\pm U_C = \pm 15 \text{ V}$ , unless otherwise noted. Lines with a \* in the comment column apply over the -40 ... 85 °C ambient temperature range.

| Parameter                                                                                        | Symbol               | Unit                 | Min    | Тур  | Max    |   | Comment                                                 |  |
|--------------------------------------------------------------------------------------------------|----------------------|----------------------|--------|------|--------|---|---------------------------------------------------------|--|
| Primary nominal DC current (continuous)                                                          | I <sub>pndc</sub>    | A                    | -2000  |      | 2000   | * |                                                         |  |
| Primary nominal RMS current                                                                      | I <sub>PN</sub>      | A                    |        |      | 2000   | * |                                                         |  |
| Primary current, measuring range                                                                 | I <sub>PM</sub>      | A                    | -3000  |      | 3000   | * |                                                         |  |
| Measuring resistance                                                                             | R <sub>M</sub>       | Ω                    | 0      |      | 1      |   | See curve page 5                                        |  |
| Secondary nominal RMS current                                                                    | I <sub>s n</sub>     | A                    | -1     |      | 1      | * |                                                         |  |
| Number of secondary turns                                                                        | $N_{\rm S}$          |                      |        | 2000 |        |   |                                                         |  |
| Resistance of secondary winding                                                                  | R <sub>s</sub>       | Ω                    |        | 4    |        |   |                                                         |  |
| Maximum withstand primary peak current <sup>1)</sup>                                             | $\hat{I}_{\rm Pmax}$ | kA                   | -10    |      | 10     |   | @ pulse of 100 ms                                       |  |
| Supply voltage positive                                                                          | $+U_{c}$             | V                    | 14.25  | 15   | 15.75  |   |                                                         |  |
| Supply voltage negative                                                                          | $-U_{c}$             | V                    | -15.75 | -15  | -14.25 |   |                                                         |  |
| Current consumption positive                                                                     | $+I_{c}$             |                      | 180    | 200  | 225    |   | Add I for total                                         |  |
| Current consumption negative                                                                     | -I <sub>C</sub> mA   |                      | 80     | 89   | 100    |   | Add <i>I</i> <sub>s</sub> for total current consumptior |  |
| Output RMS noise current 0 10 Hz 2)                                                              |                      |                      |        | 0.1  |        |   |                                                         |  |
| Output RMS noise current 0 10 kHz 2)                                                             | $I_{\sf no}$         | ppm                  |        | 4    |        |   |                                                         |  |
| Output RMS noise current 0 160 kHz 2)                                                            |                      |                      |        | 20   |        |   |                                                         |  |
| Output peak-to-peak noise current <sup>2)</sup>                                                  | $I_{\rm no \; pp}$   | ppm                  |        | 50   |        |   |                                                         |  |
| Electrical offset current + self magnetization<br>+ effect of earth magnetic field <sup>2)</sup> | I <sub>oe</sub>      | ppm                  | -10    |      | 10     | * |                                                         |  |
| Temperature coefficient of $I_{OE}$ @ $I_{P}$ = 0 A                                              | TCI <sub>OE</sub>    | ppm/K                |        | 0.1  |        |   |                                                         |  |
| Offset stability 2)                                                                              |                      | ppm/month            | -1     |      | 1      |   |                                                         |  |
|                                                                                                  | ε <sub>L</sub>       | ε <sub>L</sub> ppm - |        | 1    | 2      |   |                                                         |  |
| Linearity error <sup>2)</sup>                                                                    |                      |                      |        | 2    | 3      | * |                                                         |  |
| Delay time to 90 % of the final output value for $I_{\rm PNDC}$ step                             | t <sub>D 90</sub>    | μs                   |        |      | 1      |   | di/dt of 100 A/µs                                       |  |
| Frequency bandwidth (±1 dB)                                                                      | BW                   | kHz                  |        | 130  |        |   | Small-signal                                            |  |
| Frequency bandwidth (±3 dB)                                                                      | BW                   | <i>BW</i> kHz        |        | 140  |        |   | bandwidth, 0.5 %<br>of I <sub>P N</sub>                 |  |
| Test current                                                                                     | Ι <sub>τ</sub>       | A                    |        |      | 1      |   |                                                         |  |
| Number of turns (test winding)                                                                   | N <sub>T</sub>       |                      |        | 200  |        |   |                                                         |  |
| Start-up time                                                                                    | t <sub>start</sub>   | S                    | 2      | 5    | 15     |   |                                                         |  |

<u>Notes</u>: <sup>1)</sup> Single pulse only, not AC. The transducer may require a few seconds to return to normal operation when autoreset system is running

<sup>2)</sup> All ppm figures refer to full-scale which corresponds to a secondary nominal RMS current of 1 A.

8February2021/Version 0

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.



Riesstraße 146, 8010 Graz

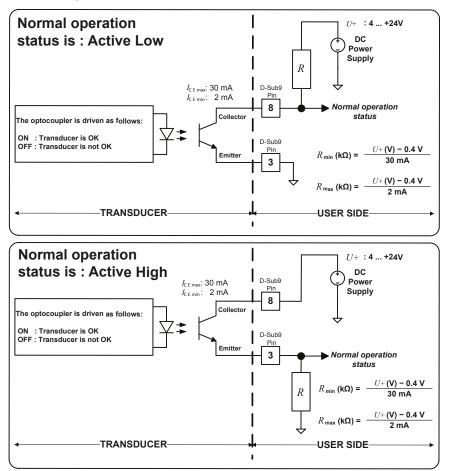




## **Overload protection - Electrical specification - Status**

The overload occurs when the primary current  $I_{\rm p}$  exceeds a trip level such that the fluxgate detector becomes completely saturated and, consequently, the transducer will switch from normal operation to overload mode.

This trip level is guaranteed to be greater than  $I_{PM}$  and its actual value depends on operating conditions such as temperature and measuring resistance.


When this happens, the transducer will automatically begin to sweep in order to lock on the primary current again.

The overload conditions will be:

- The secondary current I<sub>s</sub> generated is a low frequency signal.
- The signal normal operation status (between pin 3 and 8 of the D-sub connector) switches to V+. In other words, the output transistor is switched off (i.e., no current from collector to emitter). See the status port wiring below.
- The green LED indicator (normal operation status) turns off.

The measuring can resume when the primary current returns in the measuring range between  $-I_{PN}$  and  $+I_{PN}$ . Then the signal normal operation status switches to GND and the green LED indicator (normal operation status) is again lit.

#### Status/Interlock port wiring



The following table shows how the normal operation status acts as below:

| Status      | Value   | Description                                              |
|-------------|---------|----------------------------------------------------------|
| Active Low  | ≈ 0.7 V | The transducer is OK (Normal operation)                  |
| ACTIVE LOW  | U+      | The transducer is not OK (Overload mode or supply fault) |
| Active High | U+      | The transducer is OK (Normal operation)                  |
| Active High | ≈ 0.7 V | The transducer is not OK (Overload mode or supply fault) |

8February2021/Version 0

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.

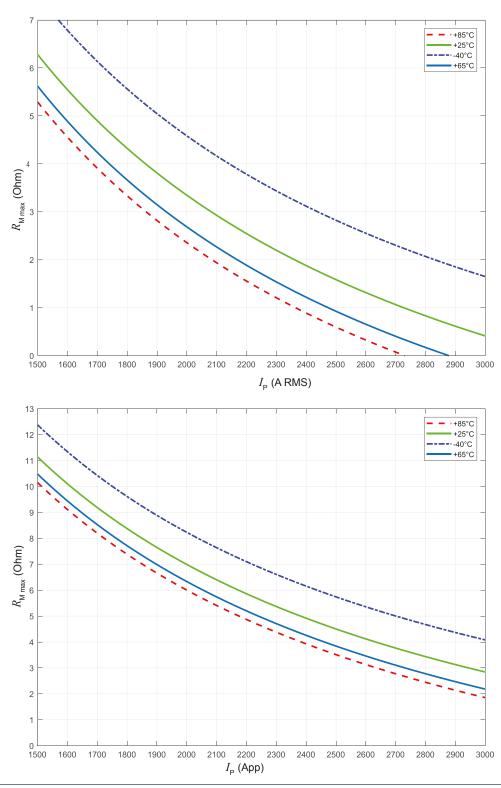
nbn Austria GmbH

Riesstraße 146, 8010 Graz



nbn@nbn.at | www.nbn.at




The following table shows how the normal operation status acts as below:

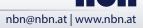
## CT 2000 (IN 2000-S/SP2)

| Normal operation status Description |                                                          |  |
|-------------------------------------|----------------------------------------------------------|--|
| < 0.7 V                             | The transducer is OK (Normal operation)                  |  |
| U+                                  | The transducer is not OK (Overload mode or supply fault) |  |

## Maximum measuring resistor versus primary current and temperature

 $\pm U_{\rm c}$  = ±14.25 V




Page 5/9

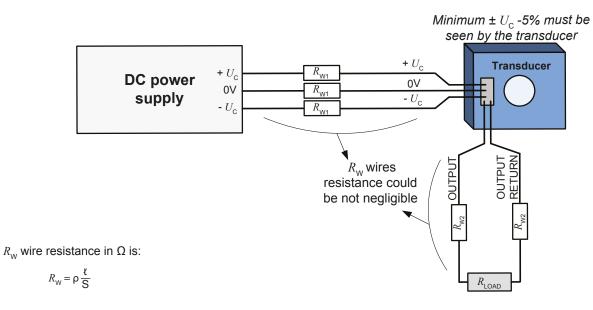
•

8February2021/Version 0

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.

nbn Austria GmbH






## Power supply and load

CT 2000 (IN 2000-S/SP2)

In order to reach the measuring range according to the maximum measuring resistor, be careful with the setup measurement when wires length are high. It means that:

- the wires resistance could be not negligible
- the voltage at the output of the DC power supply and the voltage at the transducer could be significantly different.



- S: Cross section of wire in m<sup>2</sup>
- *l*: Wire length in m
- $\rho$ : Resistivity of material in  $\Omega$ .m

#### Total measuring resistance is:

 $R_{\rm M} = R_{\rm L} + 2 \times R_{\rm W1} + 2 \times R_{\rm W2}$ 

If  $R_{W1} = R_{W2} = R_{WIRE}$  then  $R_M = R_L + 4 \times R_{WIRE}$ 

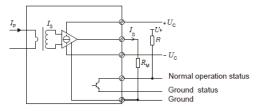
Page 6/9

8February2021/Version 0 Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.

nbn Austria GmbH

Riesstraße 146, 8010 Graz






CT 2000

(IN 2000-S/SP2)

### Performance parameters definition

The schematic used to measure all electrical parameters is shown below:



#### **Transducer simplified model**

The static model of the transducer at temperature  $T_{A}$  is:

$$I_{\rm S} = N_{\rm P}/N_{\rm S} \cdot I_{\rm P} + \varepsilon$$

In which

$$\varepsilon = I_{OF}$$
 at 25 °C +  $I_{OT}(T_{A}) + \varepsilon_{I} \cdot I_{PM} \cdot N_{P}/N_{S}$ 

Where,

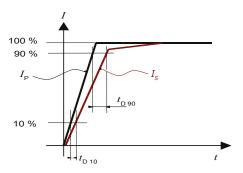
$$\begin{split} I_{OT}(T_{A}) &= TCI_{OE} \cdot |T_{A} - 25 \ ^{\circ}\text{C}| \cdot I_{PM} \cdot N_{P} / N_{S} \\ I_{S} & : \text{secondary current (A)} \\ N_{P} / N_{S} & : \text{turns ratio (1: } N_{S}) \\ I_{P} & : \text{primary current, A} \\ I_{PM} & : \text{primary current, measuring range (A)} \\ T_{A} & : \text{ambient operating temperature (°C)} \\ I_{OE} & : \text{electrical offset current (A)} \\ I_{OT} & : \text{temperature variation of } I_{OE} \text{ at } T_{A}(A) \\ \varepsilon_{L} & : \text{linearity error} \end{split}$$

This is the absolute maximum error. As all errors are independent, a more realistic way to calculate the error would be to use the following formula:

$$\varepsilon = \sqrt{\sum_{\vec{u}=1}^{N} \varepsilon_{\vec{u}}^2}$$

#### Linearity

To measure linearity, the primary current (DC) is cycled from 0 to  $I_{\rm P\,M}$ , then to  $-I_{\rm P\,M}$  and back to 0. The linearity error  $\varepsilon_{\rm L}$  is the maximum positive or negative difference between the measured points and the linear regression line, expressed in parts per million (ppm) of full-scale which corresponds to the maximum measured value.


#### **Electrical offset**

The electrical offset current  $I_{\rm O\ E}$  is the residual output current when the input current is zero.

The temperature variation  $I_{0\ T}$  of the electrical offset current  $I_{0\ E}$  is the variation of the electrical offset from 25 °C to the considered temperature.

#### **Delay times**

The delay time  $t_{D 10}$  @ 10 % and the delay time  $t_{D 90}$  @ 90 % with respect to the primary are shown in the next figure. Both slightly depend on the primary current di/dt. They are measured at nominal current.



8February2021/Version 0

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.

nbn Austria GmbH

Riesstraße 146, 8010 Graz



Page 7/9



## Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.



This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.



Caution, risk of electrical shock

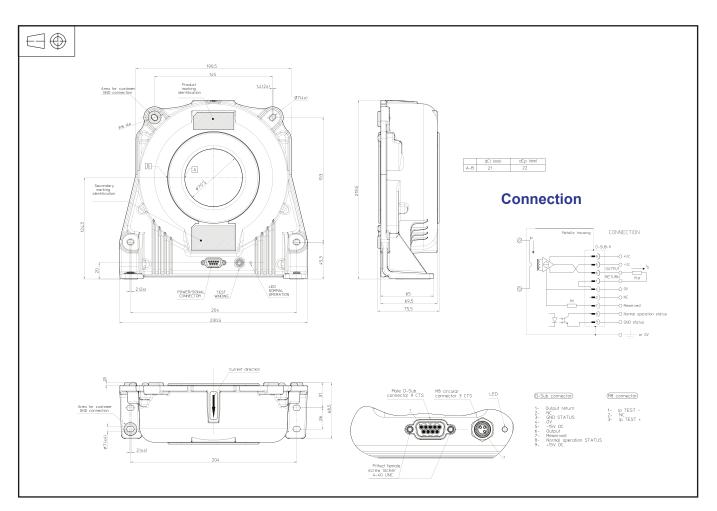
When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used. Main supply must be able to be disconnected.

#### Remark

Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: **Products/Product Documentation.** 


Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.



Page 8/9



## Dimensions (in mm)



## Connection

- Normal operation status (Pins 3 and 8) Normal operation means:
  - $\pm 15$  V ( $\pm U_{c}$ ) present
  - zero detector is working
  - compensation current  $\leq I_{PM}$  DC
  - green LED indicator is lit.

## **Mechanical characteristics**

| • | General tolerance            | ±0.75 mm               |
|---|------------------------------|------------------------|
| ٠ | Transducer fastening         |                        |
|   | - Horizontal mounting        | 4 holes Ø 7 mm         |
|   | and vertical                 | with 2 slots gap along |
|   |                              | transducer             |
|   |                              | 4 × M6 steel screws    |
|   | Recommended fastening torque | 5.5 N·m                |
|   |                              |                        |

Connection of secondary on D-SUB-9,

UNC 4-40 connector

• All mounting recommendations are given for a standard mounting. Screws with flat and spring washers.

## Remarks

- $I_{\rm s}$  is positive when  $I_{\rm p}$  flows in the direction of the arrow.
- We recommend that a shielded output cable and plug are used to ensure the maximum immunity against electrostatic fields.
- Temperature of the primary conductor should not exceed 100 °C.
- We recommend to fix the potential of the housing to the ground.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: Products/Product Documentation.i

8February2021/Version 0

Aufgrund laufender Weiterentwicklungen sind Änderungen der Spezifikationen vorbehalten. Alle Angaben vorbehaltlich Satz- und Druckfehler.

nbn@nbn.at | www.nbn.at

Page 9/9

nbn Austria GmbH Riesstraße 146, 8010 Graz